中国农学通报 ›› 2016, Vol. 32 ›› Issue (4): 144-149.doi: 10.11924/j.issn.1000-6850.casb15070093
所属专题: 生物技术
周劲松1,汤泳萍1,熊春晖2,罗绍春1,陈光宇1
收稿日期:
2015-07-17
修回日期:
2015-08-05
接受日期:
2015-08-25
出版日期:
2016-02-01
发布日期:
2016-02-01
通讯作者:
陈光宇
基金资助:
Zhou Jinsong1, Tang Yongping1, Xiong Chunhui2, Luo Shaochun1, Chen Guangyu1
Received:
2015-07-17
Revised:
2015-08-05
Accepted:
2015-08-25
Online:
2016-02-01
Published:
2016-02-01
摘要: 旨在为今后芦笋遗传育种工作提供参考和理论依据。本文综述了近几十年来国内外生物技术在芦笋育种研究中的应用主要进展,内容包括芦笋的组织培养、花药培养、小孢子培养、原生质体培养、多倍体诱导、分子标记技术及遗传转化等方面的研究,重点总结了生物技术在芦笋育种中发挥的作用及应用现状,并分析芦笋生物技术育种存在的问题。最后根据芦笋生物学特性与产业需求,探讨了未来芦笋生物技术育种工作的发展方向。
周劲松,汤泳萍,熊春晖,罗绍春,陈光宇. 生物技术在芦笋育种中的应用[J]. 中国农学通报, 2016, 32(4): 144-149.
Zhou Jinsong,Tang Yongping,Xiong Chunhui,Luo Shaochun and Chen Guangyu. Application of Biotechnology to Breeding of Asparagus officinalis L.[J]. Chinese Agricultural Science Bulletin, 2016, 32(4): 144-149.
[1] 陈光宇.中国芦笋产业发展现状与趋势[J].世界农业,2013,10:181-186. [2] 王小佳主编.蔬菜育种学(各论)[M]. 北京:中国农业出版社,2000: 241. [3] Wilmar C, Hellendoorn M. Growth and morphogenesis of asparagus cell cultured in vitro [J]. Nature, 1968,217: 369-370. [4] Murashige T, Shabde M N, Hasegawa P M, et al. Propagation of asparagus through shoot apex culture[J]. Journal of the American Society for Horticultural Science, 1972, 97: 158-161. [5] Yang H J, Clore W J. Rapid propagation of asparagus through lateral bud culture[J]. Horticultural Science, 1973, 8: 141-143. [6] 高建明,代真真,杨峰,等.抗茎枯病芦笋品种离体培养的研究[J].植物科学学报,2013(2):158-163. [7] Kunitake H, Mii M. Somatic embryogenesis and its application for breeding and micropropagation in asparagus (Asparagus officinalis L.) [J]. Plant Biotechnology, 1998, 15: 51-61. [8] 周维燕,孟新法.石刁柏离体腋芽快速无性繁殖的研究(初报) [J].北京农业大学学报,1981,7(4):89-94. [9] Chin C K. Promotion of shoot and root formation in asparagus in vitro by ancymidol[J]. Horticultural Science, 1982, 17: 590-591. [10] Khunachak A, Chin C K, Gianfagna T. promotion of asparagus shoot and root growth by growth retardants[J]. Plant Cell Tissue and Organ Culture, 1987, 11: 97-110. [11] Desjardins Y, Tiessen H, Harney P M. The effect of sucrose and ancymidol on the in vitro rooting of nodal sections of asparagus[J]. Horticultural Science, 1987, 22: 131-133. [12] 陈光宇,罗绍春,占丰溪,等.芦笋雄性优良单株筛选及其工厂化生产技术研究[A]. 植物组织培养与脱毒快繁技术——全国植物组培、脱毒快繁及工厂化生产技术学术研讨会论文集[C].2001:179-183. [13] Carmona-Martín E, Regalado J J, Padilla I M G, et al. A new and efficient micropropagation method and its breeding applications in Asparagus genera[J]. Plant Cell Tissue and Organ Culture, 2014, 119(3): 479-488. [14] Regalado J J, Carmona-Martín E, Castro P, et al. Micropropagation of wild species of the genus Asparagus L. and their interspecific hybrids with cultivated A. officinalis L., and verification of genetic stability using EST-SSRs[J]. Plant Cell Tissue and Organ Culture, 2015, 121(2): 501-510. [15] Pelletier G, Requin C, Simon G. La culturein vitro d’anthères d’asperge(Asparagus officinalis). [J]. Comptes Rendus de l Academie des Sciences Paris, 1972, 274 (6): 848-851. [16] Doré C. Production de plantes homozygotes males et fémelles à partir d’anthères d’asperge, cultivéesin vitro (Asparagus officinalis L.) [J]. Comptes Rendus de l Academie des Sciences Paris, 1974, 278: 2135-2138. [17] Falavigna A, Casali P E, Tacconi M G. Potential of in vitro anther culture technique for asparagus breeding in Italy[J]. Acta Horticulture,1990,271:39-46. [18] 周维燕,费水章,陆朝福,等.石刁柏超雄株培养技术的研究[J].北京农业大学学报,1991,17(1):65-76. [19] 张磊,刘贵仁,严仁玲,等.石刁柏花药培养再生单倍体植株和染色体数变异[J].天津农学院学报,1995,2(2):1-5. [20] 丁鑫,范双喜,高遐虹,等.石刁柏花药培养愈伤组织诱导影响因素的研究[J].北京农学院学报,2007,22(1):19-23. [21] 林宗铿,温庆放,林义章.芦笋高效花药培养技术体系的建立[J].福建农业学报,2010,25(2):212-216. [22] 陈海媛,胡淑明,乜兰春,等.芦笋花药培养愈伤诱导条件优化与植株再生[J].河北农业大学学报,2012,35(1):41-45. [23] 彭新红,周劲松,汤泳萍,等.芦笋花药培养胚状体诱导条件优化的初探[J].江西农业大学学报,2006,28(1):39-43. [24] Ercan N, Sensoy F A. Determination of the optimum microspore development stage and optimum culture medium in asparagus (Asparagus officinalis var. altilis L.) for anther culture[R].VII international symposium on in vitro culture and horticultural. Breeding, 2012:153-157. [25] 闫凤英,刘贵仁,严仁玲.石刁柏花粉离体培养及再生植株的研究[J].西北植物学报,1993,13(4): 265-269. [26] Zhang C J, Wang H L, Ma Y, et a1. Regeneration of haploid plants from isolated microspores of asparagus(Asparagus officinalis L.)[J]. Plant Cell Reports, 1994, 13: 637-640. [27] Peng M S, Wolyn D J. Improved callus formation and plant regeneration for shed -microspore culture in asparagus (Asparagus officinalis L.) [J]. Plant Cell Reports, 1999(18): 954-958. [28] 汤泳萍,周劲松,罗绍春,等.芦笋游离小孢子培养研究初报[J].江西农业学报,2011,23(3):14-16. [29] Bui Dang Ha D, Norreel B, Masset A. Regeneration of Asparagus officinalis L. through callus cultures derived from protoplasts[J]. Journal of Experimental Botany, 1975, 26: 263-270. [30] 杨丽军,许智宏.从石刁柏原生质体培养再生植株[J].实验生物学报,1987,20(3):381-383. [31] Chen G Y, Conner A J, Christey M C, et al. Culture and regeneration of protoplasts from shoots of asparagus cultures[J]. International Journal of Plant Sciences, 1997, 158(5): 543-551. [32] 尹富强,陈光宇,周劲松,等.田间栽植芦笋嫩茎的原生质体分离条件初探[J].植物生理学通讯,2007(3):547-548. [33] Kunitake H. Production of interspecific somatic hybrid plants between asparagus-officinalis and a-macowanii through electrofusion[J]. Plant Science, 1996, 116(2): 213-222. [34] Lewis M E, Sink K C. RFLP linkage map of asparagus[J]. Genome, 1996, 39: 622-627. [35] Jiang C, Sink K C. RAPD and SCAR markers linked to the sex expression locus M in asparagus[J]. Euphytica, 1997, 94: 329-333. [36] Spada A, Caporali E, Marziani G, et al. A genetic map of Asparagus officinalis based on integrated RFLP, RAPD and AFLP molecular markers[J]. Theoretical and Applied Genetics, 1998, 97: 1083-1089. [37] Mercati F, Riccardi P, Leebens-Mack J, et al. Nucleotide Polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.) [J]. Plant Science, 2013, 2: 115-123. [38] Mercati F, Riccardi P, Harkess A, et al. Single nucleotide polymorphism-based parentage analysis and population structure in garden asparagus, a worldwide genetic stock classification[J]. Molecular Breeding, 2015, 35: 59. [39] Reamon-Büttner S M, Jung C. AFLP-derived STS markers for the identification of sex in Asparagus officinalis L.[J]. Theoretical and Applied Genetics, 2000, 100: 432-438. [40] Jamsari A, Nitz I, Reamon-Büttner S M, et al. BAC-derived diagnosetic markers for sex determianation in asparagus[J]. Theoretical and Applied Genetics, 2004, 108: 1140-1146. [41] Telgmann-Rauber A, Jamsari A, Kinney M S, et al. Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus[J]. Molecular Genetics and Genomics, 2007, 278: 221-234. [42] 韩莹琰,杨凯,范双喜,等.与石刁柏性别基因M紧密连锁的AFLP新标记[J].园艺学报,34(3):779-782. [43] 周劲松,汤泳萍,罗绍春,等.芦笋超雄株的DNA分子标记辅助筛选[J].园艺学报,2012(11):2182-2188. [44] 李书粉,王聪慧,徐嘉铭,等.石刁柏雄性连锁的AFLP及SCAR标记的建立[J].河南师范大学学报:自然科学版,2014(1):115-119. [45] Kanno A, Kubota S, Ishino K. Conversion of a male-specific RAPD marker into an STS marker in Asparagus officinalis L.[J]. Euphytica, 2014, 97(1): 39-46. [46] Patricia C, Roberto M, Carlos L E, et al. Employment of molecular markers to develop tetraploid "supermale" asparagus from andromonoecious plants of the landrace ''Morado de Huetor''[J]. Spanish Journal of Agricultural Research, 2014, 12(4): 1131-1136. [47] Bytebier B, Deboeck F. T-DNA organization in tumor cultures and transgenic plants of monocetyledon Asparagus officinalis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84: 5344-5349. [48] Delbreil B, Guerche P, Jullien M. Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants[J]. Plant Cell Reports January, 1993, 12(3): 129-132. [49] Kisaka H, Kameya T. Fertile transgenic asparagus agrobacterium-mediated plants produced by transformation[J]. Plant Biotechnology, 1998, 15(4)177-181. [50] Cabrera-Ponce J L, Lopez L, Assad-Garcia N, et al. An efficient particle bombardment system for the genetic transformation of asparagus (Asparagus officinalis L.) [J]. Plant Cell Reports, 1997, 16: 255-260. [51] Li B C, Wolyn D J. Recovery of transgenic asparagus plants by particle gun bombardment of somatic cells[J]. Plant Science, 1997, 126(1): 59-68. [52] Mukhopadhyay S and Desjardins Y. Direct gene transfer to protoplasts of two genotypes of Asparagus officinalis L. by electroporation[J]. Plant Cell Reports, May 1994, 13(8): 421-424. [53] Chen G Y, Conner A J, Fautrier A G, et al. Transient beta-glucuronidase expression in asparagus protoplasts following electroporation[J]. Acta Horticulturae, 1999(479): 339-345. [54] Mukhopadhyay S, Overney S, Yelle S, et al. Regeneration of transgenic plants from electroporated protoplasts of Asparagus officinalis L[J]. Journal of Plant Biochemistry and Biotechnology, February 2002, 11(1): 57-60. [55] Limanton-Grevet A, Jullien M. Agrobacterium-mediated transformation of Asparagus officinalis L.: molecular and genetic analysis of transgenic plants[J]. Molecular Breeding, 2001, 7: 141-150. [56] Braak J P, Zeilinga A E. Production of a colchicine-induced tetraploid asparagus[J]. Euphytica, 1957, 6(3): 201-272. [57] Skiebe K, Stein M, Gottwald J, et al. Breeding of polyploid asparagus (Asparagus officinalis L.) [J]. Plant Breeding, 1991, 106: 99-106. [58] 韩成云,胡雄贵,胡松梅,等.石刁柏多倍体的诱导与鉴定[J].湖南农业大学学报:自然科学版,2008,34(03):320-322. [59] Carmona-Martin E, Regalado J J, Raghavan R, et al. In vitro induction of autooctoploid asparagus genotypes[J]. Plant Cell Tissue and Organ Culture, 2015, 121: 249-254. [60] Moreno R, Espejo J A, Cabrera A, et al. Ploidic and molecular analysis of ‘Morado de Huetor’ Asparagus (Asparagus officinalis L.) population: a Spanish Tetraploid Landrace[J]. Genetic Resources and Crop Evolution, 2006, 53:729-736. doi:10.1007/s10722-004-4717-0. [61] Moreno R, Espejo J A, Gil J. Development of triploid hybrids in asparagus breeding employing a tetraploid landrace[J]. Euphytica, 2010, 173: 369-375. [62] Blockus S, Lesker T, Maiss E. Complete genome sequences of two biologically distinct isolates of Asparagus virus 1[J]. Archives Virology, February 2015, 160(2): 569-572. [63] Jaspers M V, Falloon P G, Pearson M N. Seed and pollen transmission of asparagus virus 2[J]. European Journal of Plant Pathology, 2014, 104(9):1001-1006. [64] Hashimoto M, Ozeki J, Komatsu K, et al. Complete nucleotide sequence of asparagus virus 3[J]. Archives Virology, Jan, 2008, 153(1): 219-221. |
[1] | 卢倩倩, 冯琳骄, 王爽, 古力扎提·包尔汗, 褚韧, 周龙. 复合盐碱胁迫对鲜食葡萄生理生化指标的影响[J]. 中国农学通报, 2023, 39(1): 62-70. |
[2] | 金梅娟, 佘旭东, 沈明星, 陆长婴, 陶玥玥, 王海候. 稻田构建垄型土槽耦合基质栽培草莓的生产效应研究[J]. 中国农学通报, 2023, 39(1): 71-76. |
[3] | 周冬冬, 张军, 葛梦婕, 刘忠红, 朱晓欢, 李春燕. 不同氮肥处理对稻茬晚播小麦‘淮麦36’产量、氮素利用率和品质的影响[J]. 中国农学通报, 2023, 39(1): 1-7. |
[4] | 王福玉, 陈贵菊, 孙雷明, 黄玲, 邵敏敏, 赵凯, 杨本洲, 张玉丹, 闫璐, 王霖. 耕作方式与施氮量互作对小麦生长、产量与品质的影响[J]. 中国农学通报, 2022, 38(9): 20-26. |
[5] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[6] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[7] | 王强强, 杨自辉, 郭树江, 张剑挥, 王多泽. 灌水量对民勤干旱沙区骏枣生长和产量的影响[J]. 中国农学通报, 2022, 38(9): 71-74. |
[8] | 周小红. 基于多元回归分析的农作物产量估测模型研究[J]. 中国农学通报, 2022, 38(8): 152-156. |
[9] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[10] | 武志斌, 黄超, 雷媛, 敬峰, 刘战东. 不同产量水平下冬小麦水肥利用特性研究[J]. 中国农学通报, 2022, 38(8): 64-71. |
[11] | 郑本川, 张锦芳, 蒋俊, 崔成, 柴靓, 黄友涛, 周正鉴, 李浩杰, 蒋梁材. 不同熟期“川油”系列甘蓝型油菜品种主要性状与产量的相关分析[J]. 中国农学通报, 2022, 38(7): 7-17. |
[12] | 付焱焱, 李云峰, 韩冬, 马树庆. 吉林省粮食主产区玉米生长季水分盈亏及其对产量的影响[J]. 中国农学通报, 2022, 38(7): 99-105. |
[13] | 钮力亚, 王伟伟, 张玉洁, 邹景伟, 王志, 陆莉, 王奉芝, 王伟, 于亮. 小麦品质性状及产量性状对馒头面条评分的影响[J]. 中国农学通报, 2022, 38(6): 129-133. |
[14] | 姚金保, 杨学明, 周淼平, 张鹏. 江苏省小麦参试品种(系)产量与产量构成因素分析[J]. 中国农学通报, 2022, 38(6): 15-19. |
[15] | 田艺心, 高凤菊, 曹鹏鹏, 高祺. 黄淮海夏大豆干物质积累、转运及产量对播期的响应特征[J]. 中国农学通报, 2022, 38(6): 20-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||