[1]	Ma G S, Jin Y, Li Y P, et al. Iron and zinc deficiencies in China: what is a feasible and cost-effective strategy[J]. Public Health Nutrition, 2008,11:632-638. 
[2]	Cakmak I. Enrichment of cereal grains with zinc: agronomic or genetic biofortification [J]. Plant and Soil, 2008, 302: 1-17. 
[3]	Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective [J]. Journal of Experimental Botany, 2004, 55: 353-364. 
[4]	张勇,王德森,张艳,等.北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析[J].中国农业科学, 2007,40:1871-1876. 
[5]	曹玉贤,田霄鸿,杨习文,等.小麦和小黑麦籽粒的营养品质及其相关性分析[J].西北农林科技大学学报:自然科学版, 2010, 38: 104-110. 
[6]	张跃强.中国小麦玉米籽粒锌营养状况及其调控[D].北京:中国农业大学,2012. 
[7]	Kutman U B, Yildiz B, Cakmak I. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat [J]. Journal of Cereal Science, 2011, 53: 118-125. 
[8]	Pfeiffer W H, McClafferty B. HarvestPlus: breeding crops for better nutrition [J]. Crop Science, 2007, 47: S88-S105. 
[9]	Zhao F J, Shewry P R. Recent developments in modifying crops and agronomic practice to improve human health [J]. Food Policy, 2011, 36: S94-S101. 
[10]	Cakmak I, Kalayci M, Kaya Y, et al. Biofortification and localization of zinc in wheat grain [J]. Journal of Agricultural and Food Chemistry, 2010, 58: 9092-9102. 
[11]	Kutman U B, Yildiz B, Ozturk L, et al. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen [J]. Cereal Chemistry, 2010, 87: 1-9. 
[12]	Shi R L, Zhang Y Q, Chen X P, et al. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.) [J]. Journal of Cereal Science, 2010, 51: 165-170. 
[13]	Xue Y F, Yue S C, Zhang Y Q, et al. Grain and shoot zinc accumulation in winter wheat affected by nitrogen management [J]. Plant and Soil, 2012, 361: 153-163. 
[14]	Xue Y F, Zhang W, Liu D Y, et al. Effects of nitrogen management on root morphology and zinc translocation from root to shoot of winter wheat in the ?eld [J]. Field Crops Research, 2014, 161: 38-45. 
[15]	刘铮.中国土壤中锌含量的分布规律[J].中国农业科学, 1994, 27: 30-37. 
[16]	Alloway B J. Soil factors associated with zinc deficiency in crops and humans [J]. Environmental Geochemistry and Health, 2009, 31: 537-548. 
[17]	Manske G G B, Vlek P L G. Root architecture – wheat as a model plant [M]. New York: Marcel Dekker Inc., 2002. 
[18]	Wang J W, Mao H, Zhao H B, et al. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China [J]. Field Crops Research, 2012, 135: 89-96. 
[19]	Zhao A Q, Lu X C, Chen Z H, et al. Zinc fertilization methods on zinc absorption and translocation in wheat [J]. Journal of Agricultural Science, 2011, 3: 28-35. 
[20]	田霄鸿,陆欣春,买文选,等.碳酸钙含量对土壤中锌有效性和小麦锌铁吸收的影响[J].土壤,2008,40:425-431. 
[21]	陆欣春.潜在缺锌土壤上土施锌肥对冬小麦锌营养品质及土壤锌形态转化的影响[D].杨凌:西北农林科技大学,2012. 
[22]	李孟华,王朝辉,李强,等.低锌旱地土施锌肥对小麦产量和锌利用的影响[J].农业环境科学学报,2013,32:2168-2174. 
[23]	黄文川,李录久,李文高.小麦氮锌配施效应及增产机理研究[J].核农学报,2000,14:225-229. 
[24]	陆欣春,田霄鸿,杨习文,等.氮锌配施对不同冬小麦品种产量及锌营养的影响[J].中国生态农业学报,2010,18:923-928. 
[25]	杨清,刘新保,褚天铎,等.小麦氮、磷与锌配合施用的研究[J].中国农业科学,1995,28:15-24. 
[26]	郭九信,隋标,商庆银,等.氮锌互作对水稻产量及籽粒氮、锌含量的影响[J].植物营养与肥料学报,2012,18:1336-1342. 
[27]	何忠俊,华珞,洪常青.氮锌交互作用对黄棕壤锌形态的影响[J].农业环境科学学报,2004,23:209-212. 
[28]	Liljeroth E, Van Veen J A, Miller H J. Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations [J]. Soil Biology and Biochemistry, 1990, 22: 1015-1021. 
[29]	Paterson E, Sim A, Standing D, et al. Root exudation from Hordeum vulgare in response to localized nitrate supply [J]. Journal of Experimental Botany, 2006, 57: 2413-2420. 
[30]	Aciksoz S B, Ozturk L, Gokmen O O, et al. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants [J]. Physiologia Plantarum, 2011, 142: 287-296. 
[31]	Treeby M, Marschner H, R?mheld V. Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators [J]. Plant and Soil, 1989, 114: 217-226. 
[32]	Erenoglu E B, Kutman U B, Ceylan Y, et al. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat [J]. New Phytologist, 2011, 189: 438-448. 
[33]	Cakmak I, Pfeiffer W H, McClafferty B. Biofortification of durum wheat with zinc and iron [J]. Cereal Chemistry, 2010, 87: 10-20. 
[34]	Palmer C M, Guerinot M L. Facing the challenges of Cu, Fe and Zn homeostasis in plants [J]. Nature Chemical Biology, 2009, 5: 333-340. 
[35]	Curie C, Cassin G, Couch D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters [J]. Annals of Botany, 2009, 103: 1-11. 
[36]	Haydon M J, Cobbett C S. Transporters of ligands for essential metal ions in plants [J]. New Phytologist, 2007, 174:499-506. 
[37]	Balyan D, Singh J. Effect of nitrogen and zinc on production of cauliflower variety snowball-16 [J]. Haryana Agricultural University Journal of Research (India), 1994, 24: 88-92. 
[38]	Riceman D, Jones G. Distribution of zinc in subterranean clover (Trifolium subterraneum L.) grown to maturity in a culture solution containing zinc labelled with the radioactive isotope 65Zn [J]. Crop and Pasture Science, 1958, 9: 730-744. 
[39]	von Wirén N, Klair S, Bansal S, et al. Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants [J]. Plant Physiology, 1999, 119: 1107-1114. 
[40]	Hocking P J. Dry-matter production, mineral nutrient concentrations, and nutrient distribution and redistribution in irrigated spring wheat [J]. Journal of Plant Nutrition, 1994, 17: 1289-1308. 
[41]	Zhang J, Wu L, Wang M. Can iron and zinc in rice grains (Oryza sativa L.) be biofortified with nitrogen fertilisation under pot conditions [J]. Journal of the Science of Food and Agriculture, 2008, 88: 1172-1177. 
[42]	Pearson J N, Rengel Z. Distribution and remobilization of Zn and Mn during grain development in wheat [J]. Journal of Experimental Botany, 1994, 45: 1829-1835. 
[43]	Longnecker N, Robson A. Distribution and transport of zinc in plants [A]. Robson A D. Zinc in soils and plants [C]. Springer Netherlands, 1993: 79-91. 
[44]	Herren T, Feller U. Transport of cadmium via xylem and phloem in 	maturing wheat shoots: comparison with the translocation of zinc, strontium and rubidium [J]. Annals of Botany, 1997, 80: 623-628. 
[45]	Aciksoz S, Yazici A, Ozturk L, et al. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers [J]. Plant and Soil, 2011, 349: 215-225. 
[46]	Haslett B S, Reid R J, Rengel Z. Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots [J]. Annals of Botany, 2001, 87: 379-386. 
[47]	Marschner P. Mineral nutrition of higher plants [M]. London: Academic, 2011. 
[48]	Uauy C, Distelfeld A, Fahima T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat [J]. Science, 2006, 314: 1298-1301. 
[49]	Distelfeld A, Cakmak I, Peleg Z, et al. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations [J]. Physiologia Plantarum, 2007, 129, 635-643. 
[50]	Waters B M, Uauy C, Dubcovsky J, et al. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain [J]. Journal of Experimental Botany, 2009, 60: 4263-4274. 
[51]	Miller R O, Jacobsen J S, Skogley E O. Aerial accumulation and partitioning of nutrients by hard red spring wheat [J]. Communications in Soil Science and Plant Analysis, 1994, 25: 1891-1911. 
[52]	Rauser W E, Samarakoon A B. Vein loading in seedlings of Phaseolus vulgaris exposed to excess cobalt, nickel, and zinc [J]. Plant Physiology, 1980, 65: 578-583. 
[53]	Pearson J, Rengel Z, Jenner C F, et al. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears [J]. Physiologia Plantarum, 1996, 98: 229-234. 
[54]	Pearson J N, Rengel Z, Jenner C F, et al. Transport of zinc and manganese to developing wheat grains [J]. Physiologia Plantarum, 1995, 95: 449-455. 
[55]	Wang Y X, Specht A, Horst W J. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat [J]. New Phytologist, 2011, 189: 428-437. 
[56]	Kutman U, Yildiz B, Cakmak I. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat [J]. Plant and Soil, 2011, 342: 149-164. 
[57]	Krüger C, Berkowitz O, Stephan U W, et al. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. [J]. Journal of Biological Chemistry, 2002, 277: 25062-25069. 
[58]	Nishiyama R, Kato M, Nagata S, et al. Identification of Zn–nicotianamine and Fe–2′-deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.) [J]. Plant and Cell Physiology, 2012, 53: 381-390. 
[59]	Shi R L, Weber G, Koster J, et al. Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants [J]. New Phytologist, 2012, 195: 372-383. 
[60]	Barunawati N, Giehl R F H, Bauer B, et al. The influence of inorganic nitrogen fertilizer forms on micronutrient retranslocation and accumulation in grains of winter wheat [J]. Frontiers in Plant Science, 2013, 4: 1-11. 
[61]	Suzuki M, Tsukamoto T, Inoue H, et al. Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants [J]. Plant Molecular Biology, 2008, 66: 609-617. 
[62]	Trampczynska A, Kupper H, Meyer-Klaucke W, et al. Nicotianamine forms complexes with Zn(II) in vivo [J]. Metallomics, 2010, 2: 57-66. 
[63]	Waters B M, Chu H H, DiDonato R J, et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds [J]. Plant Physiology, 2006, 141: 1446-1458. 
[64]	Morgounov A, Gómez-Becerra H, Abugalieva A, et al. Iron and zinc grain density in common wheat grown in Central Asia [J]. Euphytica, 2007, 155: 193-203. 
[65]	Peleg Z, Saranga Y, Yazici A, et al. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes [J]. Plant and Soil, 2008, 306: 57-67. 
[66]	Zhao F J, Su Y H, Dunham S J, et al. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin [J]. Journal of Cereal Science, 2009, 49: 290-295. 
[67]	Li M, Wang S X, Tian X H, et al. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P [J]. Journal of Cereal Science, 2015, 61: 26-32. 
[68]	李孟华,王朝辉,王建伟,等.低锌旱地施锌方式对小麦产量和锌利用的影响[J].植物营养与肥料学报,2013,19:1346-1355. 
[69]	靳静静,王朝辉,戴健,等.长期不同氮、磷用量对冬小麦籽粒锌含量的影响[J].植物营养与肥料学报,2014,20:1358-1367. 
[70]	薛艳芳.氮肥管理对高产小麦和玉米锌吸收、转移与累积的影响[D].北京:中国农业大学,2014. 
[71]	左毅,马冬云,王晨阳,等.花后叶面喷施氮肥和锌肥对小麦粒重及营养品质的影响[J].麦类作物学报,2013,33:123-128. 
[72]	郭九信,廖文强,凌宁,等.氮锌配施对小麦产量及氮锌含量的影响[J].南京农业大学学报,2013,36:77-82.
  |