[1] |
郭夏丽, 杨小丽, 顺义. 等. 秸秆降解菌的筛选及菌种组合[J]. 郑州大学学报:工学版, 2010,31(1):74-75.
|
[2] |
任红梅. 产纤维素酶菌株的筛选及对玉米芯降解的研究[D]. 兰州: 兰州理工大学, 2013.
|
[3] |
李慧君, 杜双田, 孙婷. 等. 纤维素分解菌的筛选及玉米秸秆降解[J]. 西北农业学报, 2010,19(8):74-79.
|
[4] |
刘尧, 李力, 李俊. 等. 玉米秸秆高效腐解复合菌系CSS-1的选育及其组成分析[J]. 中国农业科学, 2010,43(21):4437-4446.
|
[5] |
段亚冰, 陈洋洋, 康业斌. F1菌株对玉米秸秆木质素和纤维素降解能力的研究[J]. 河南农业科学, 2009(4):30.
|
[6] |
乐文民. 中性纤维素酶产生菌的筛选及发酵条件初步优化[D]. 无锡: 江南大学, 2014.
|
[7] |
王元明. 高温纤维素降解菌的筛选及其复合菌剂对秸秆降解效果的研究[D]. 南京: 南京农业大学, 2013.
|
[8] |
孟凡旭. 藏猪源纤维素分解菌株的筛选鉴定及酶学特性研究[D]. 杨凌: 西北农林科技大学, 2014.
|
[9] |
别春雨. 白耙齿菌的筛选鉴定及其产酶与降解秸秆条件的优化[D]. 扬州: 扬州大学, 2014.
|
[10] |
王娇. 锰过氧化物酶基因在毕赤酵母中的表达及其降解玉米秸秆中木质素能力的研究[D]. 郑州: 河南农业大学, 2014.
|
[11] |
杨小丽. 秸秆降解菌的选育及复配研究[D]. 郑州: 郑州大学, 2009.
|
[12] |
李慧君. 秸秆纤维素降解菌的筛选及其利用研究[D]. 杨凌: 西北农林科技大学, 2010.
|
[13] |
赵伟, 潘延欣, 靳雯然. 等. 低温菌剂降解秸秆还田对东北黑土微生物活性的影响[J]. 湖北农业科学, 2014,53(17):4020-4024.
|
[14] |
张恒芳. 低温秸秆分解菌的筛选及降解效果研究[D]. 长春: 吉林农业大学, 2013.
|
[15] |
刘爽. 中低温秸秆降解菌的筛选及其秸秆降解效果研究[D]. 北京: 中国农业科学院, 2011.
|
[16] |
杜俊杰, 徐凤花, 赵忠宝. 等. 低温兼性厌氧纤维素降解菌系的选育[J]. 东北农业大学学报, 2012,43(2):83-87.
|
[17] |
张坤, 刘国冰, 冯瑞哲. 等.好氧状态对于玉米秸秆降解过程的影响[A]. 中国环境科学学会2021年科学技术年会论文集(二)[C]. 2021:732-738.
|
[18] |
于艳辉, 程智慧, 谢芝春. 等. 5种微生物发酵剂对玉米秸秆的发酵效果[J]. 西北农业学报, 2010,19(2):95-99.
|
[19] |
薛红枫, 闫贵龙, 孟庆翔. 玉米秸秆不同部位碳水化合物组分体外发酵动态分析[J]. 畜牧兽医学报, 2007,38(9):926-933.
|
[20] |
闫贵龙, 曹春梅, 鲁琳. 等. 玉米秸秆不同部位主要化学成分和活体外消化率比较[J]. 中国农业大学学报, 2006,11(3):70-74.
|
[21] |
范春辉, 张颖超, 王家宏. pH值对秸秆腐殖化溶解性有机质紫外光谱和荧光光谱的影响[J]. 光谱学与光谱分析, 2015,35(7):1933-1937.
|
[22] |
崔鸿亮, 刘长莉, 李春雅. 等. 微生物菌群协同提高水稻秸秆转化机制的解析[J]. 微生物学报, 2021,61(9):2791-2805.
|
[23] |
青格尔, 高聚林, 于晓芳. 等. 玉米秸秆低温高效降解复合菌系GF-20的温度和pH适应性研究[J]. 西北农林科技大学学报(自然科学版), 2017,45(1):156-164.
|
[24] |
苏鑫, 王敬红, 张方政. 等. 复合菌系降解玉米秸秆过程中群落演替与秸秆降解的关系[J]. 微生物学报, 2020,60(12):2675-2689.
|
[25] |
胡海红, 孙继颖, 高聚林. 等. 低温高效降解玉米秸秆复合菌系发酵条件优化及腐解菌剂的研究[J]. 农业环境科学学报, 2016,35(8):1602-1609.
|
[26] |
肖艳萍, 张仕颖, 包立. 等. 环境温度和酸碱变化适应性广的纤维素降解菌复合系筛选[J]. 西南农业学报, 2020,33(5):1019-1027.
|
[27] |
刘爽, 范丙全. 秸秆纤维素降解真菌QSH3-3的筛选及其特性研究[J]. 植物营养与肥料学报, 2012,18(1):218-226.
|
[28] |
金剑, 康文丽, 张焱鑫. 等. 不同Cu离子浓度和pH值对云芝降解秸秆中木质素和纤维素的影响[J]. 食品科学, 2009,30(20):173-177.
|
[29] |
王伟东, 王小芬, 刘长莉. 等. 木质纤维素分解菌复合系WSC-6分解稻秆过程中的产物及pH动态[J]. 环境科学, 2008(1):219-224.
|
[30] |
张楠, 邸明伟. pH值对漆酶活化玉米秸秆木质素的影响[J]. 粘接, 2015,36(6):42-46.
|
[31] |
YAN C, YAN S S, JIA T Y, et al. Decomposition characteristics of rice straw returned to the soil in northeast China[J]. Nutrient cycling in agroecosystems, 2019,114(3):211-224.
doi: 10.1007/s10705-019-09999-8
URL
|
[32] |
TANG S R, CHENG W G, HU R G, et al. Simulating the effects of soil temperature and moisture in the off-rice season on rice straw decomposition and subsequent CH4 production during the growth season in a paddy soil[J]. Biology and fertility of soils, 2016,52(5):739-748.
doi: 10.1007/s00374-016-1114-8
URL
|
[33] |
NAKAJIMA Miyuki, CHENG Weiguo, TANG Shuirong, et al. Modeling aerobic decomposition of rice straw during the off-rice season in an Andisol paddy soil in a cold temperate region of Japan: Effects of soil temperature and moisture[J]. Soil science and plant nutrition, 2016,62(1):90-98.
doi: 10.1080/00380768.2015.1121116
URL
|
[34] |
PEKKA Vanhala, KRISTIINA Karhu, MIKKO Tuomi, et al. Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone[J]. Soil biology and biochemistry, 2008,40(7):1758-1764.
doi: 10.1016/j.soilbio.2008.02.021
URL
|
[35] |
LIU Yuan, HE Nianpeng, ZHU Jianxing, et al. Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands[J]. Global change biology, 2017,23(8):3393-3402.
doi: 10.1111/gcb.13613
pmid: 28055123
|
[36] |
ZHOU Guixiang, ZHANG Jiabao, CHEN Lin, et al. Temperature and straw quality regulate the microbial phospholipid fatty acid composition associated with straw decomposition[J]. Pedosphere, 2016,26(3):386-398.
doi: 10.1016/S1002-0160(15)60051-0
URL
|
[37] |
ZHOU Guixiang, ZHANG Jiabao, ZHANG Congzhi, et al. Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures[J]. Scientific reports, 2016,6(1):22186-22198.
doi: 10.1038/srep22186
URL
|
[38] |
DEVÊVRE Olivier C, HORWÁTH William R. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures[J]. Soil biology and biochemistry, 2000,32(11):1773-1785.
doi: 10.1016/S0038-0717(00)00096-1
URL
|
[39] |
董敏. 若尔盖湿地不同温度型纤维素分解菌的分离、鉴定和共发酵效果研究[D]. 雅安: 四川农业大学, 2005.
|
[40] |
周桂香, 陈林, 张丛志. 等. 温度水分对秸秆降解微生物群落功能多样性影响[J]. 土壤, 2015,47(5):911-918.
|
[41] |
REN Haiwei, FENG Yinping, LIU Tong, et al. Effects of different simulated seasonal temperatures on the fermentation characteristics and microbial community diversities of the maize straw and cabbage waste co-ensiling system[J]. Science of the total environment, 2020,708(C):135113.
|
[42] |
孔军军, 牛子一, 于同金. 等. 水热预处理过程中pH值对玉米秸秆水解特性的影响[J]. 中国造纸, 2020,39(11):30-36.
|
[43] |
刘璐. 不同温湿度下秸秆还田对植烟酸化土壤pH和有机碳的影响[D]. 长沙: 湖南农业大学, 2019.
|
[44] |
孙浩, 徐桂中, 吴发红. 等. 不同pH值环境下麦秸秆纤维腐蚀规律研究[J]. 江苏农业科学, 2017,45(5):252-256.
|