中国农学通报 ›› 2022, Vol. 38 ›› Issue (33): 80-88.doi: 10.11924/j.issn.1000-6850.casb2021-1209
收稿日期:
2021-12-19
修回日期:
2022-03-02
出版日期:
2022-11-25
发布日期:
2022-11-22
通讯作者:
文永莉
作者简介:
程璐,女,1996年出生,山西朔州人,硕士研究生,研究方向:土壤有机碳降解。通信地址:030006 山西省太原市坞城路92号 山西大学,E-mail:基金资助:
CHENG Lu(), WEN Yongli(
), CHENG Man
Received:
2021-12-19
Revised:
2022-03-02
Online:
2022-11-25
Published:
2022-11-22
Contact:
WEN Yongli
摘要:
地表太阳紫外线-B(UV-B,波长:280~320 nm)辐射增强和气候变化均是当今重要的全球性环境问题。平流层臭氧层损耗以及大气CO2、CH4和N2O等温室气体排放的增加,是驱动这两大全球性问题的主要因素。UV-B辐射增强会通过一系列的生物地球化学进程影响陆地生态系统碳氮平衡,改变CO2、CH4、N2O等温室气体的排放,进一步对气候变化产生作用。笔者对UV-B辐射增强对陆地生态系统CO2排放的影响途径(凋落物和土壤)和影响机制(有机物中难降解分子转化为可溶性有机碳、有机物非生物光化学降解以及光引发产生的微生物降解)进行了总结,阐述了UV-B辐射增强对CH4和N2O排放的影响途径(植株组织化学结构变化和根系分泌物组分变化),及其在不同生态系统中与环境要素相互作用下的排放规律。此外,气候变化背景下,一定范围内的温度升高和降水量减少可促进UV-B辐射增强产生的有机物光降解作用,进而促进温室气体的排放。目前,UV-B辐射增强对陆地生态系统的影响研究相对较缺乏,大都集中在干旱生态系统,且定量研究较少。今后需更多长期、大规模的野外实地研究,并结合模型来准确估计UV-B辐射增强对陆地生态系统温室气体排放的贡献。本论文可为全球变化背景下精准预测温室气体排放提供参考。
中图分类号:
程璐, 文永莉, 程曼. UV-B辐射增强对陆地生态系统温室气体排放影响的研究进展[J]. 中国农学通报, 2022, 38(33): 80-88.
CHENG Lu, WEN Yongli, CHENG Man. Effects of Enhanced UV-B Radiation on Greenhouse Gas Emissions in Terrestrial Ecosystem: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(33): 80-88.
[1] | 牛传坡. UV-B辐射对土壤-作物系统N2O排放和呼吸速率的影响及机理探讨[D]. 南京: 南京农业大学, 2007. |
[2] | 易琼, 逄玉万, 杨少海, 等. 施肥对稻田甲烷与氧化亚氮排放的影响[J]. 生态环境学报, 2003, 22(8):1432-1437. |
[3] | 赵丛. 污水处理过程中温室气体甲烷和氧化亚氮的释放量研究[J]. 低碳世界, 2019, 9(1):5-6. |
[4] | IPCC. Climate Change 2013:The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013. |
[5] |
SOLOMON S, IVY D J, KINNISON D, et al. Emergence of healing in the Antarctic ozone layer[J]. Science, 2016, 353(6296):269-274.
doi: 10.1126/science.aae0061 pmid: 27365314 |
[6] |
FANG X K, PYLE J A, CHIPPERFIELD M P, et al. Challenges for the recovery of the ozone layer[J]. Nature geoscience, 2019, 12(8):592-596.
doi: 10.1038/s41561-019-0422-7 |
[7] |
AUSTIN A T, VIVANCO L A. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation[J]. Nature, 2006, 442(7102):555-558.
doi: 10.1038/nature05038 URL |
[8] | BRANDT L A. The role of photodegradation in plant litter decomposition in grassland ecosystems[D]. Minnesota States: University of Minnesota, 2009. |
[9] |
HENRY H A L, BRIZGYS K, FIELD C B. Litter decomposition in a California annual grassland: interactions between photodegradation and litter layer thickness[J]. Ecosystem, 2008, 11(4):545-554.
doi: 10.1007/s10021-008-9141-4 URL |
[10] | RUTLEDGE S, CAMPBELL D I, BALDOCCHI D, et al. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter[J]. Global change biology, 2010, 16(11):3065-3074. |
[11] |
DAY T A, ZHANG E T, RUHLAND C T. Exposure to solar UV-B radiation accelerates mass and lignin loss of Larrea tridentata litter in the sonoran desert[J]. Plant ecology, 2007, 193(2):185-194.
doi: 10.1007/s11258-006-9257-6 URL |
[12] |
GALLO M E, PORRAS-ALFARO A, ODENBACH K J, et al. Photoacceleration of plant litter decomposition in an arid environment[J]. Soil biology and biochemistry, 2009, 41(7):1433-1441.
doi: 10.1016/j.soilbio.2009.03.025 URL |
[13] |
GALLO M E, SINSABAUGH R L, CABANISS S E. The role of ultraviolet radiation in litter decomposition in arid ecosystems[J]. Applied soil ecology, 2006, 34(1):82-91.
doi: 10.1016/j.apsoil.2005.12.006 URL |
[14] |
ROZEMA J, LENSSEN G M, van de STAAIJ J W M, et al. Effects of UV-B radiation on terrestrial plants and ecosystems: interaction with CO2 enrichment[J]. Plant ecology, 1997, 128(1-2):183-191.
doi: 10.1023/A:1009762924174 URL |
[15] |
VIGANO I, van WEELDEN H, HOLZINGER R, et al. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components[J]. Biogeosciences, 2008, 5(39):937-947.
doi: 10.5194/bg-5-937-2008 URL |
[16] | MARINHO O A, MARTINELLI L A, DUARTE-NETO P J, et al. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil[J]. Science of the total environment, 2020, 715:1-9. |
[17] |
SOLEDAD MÉNDEZ M, LAURA MARTINEZ M, Araujo P I, et al. Solar radiation exposure accelerates decomposition and biotic activity in surface litter but not soil in a semiarid woodland ecosystem in Patagonia, Argentina[J]. Plant and soil, 2019, 445(7):483-496.
doi: 10.1007/s11104-019-04325-1 URL |
[18] |
WANG J, LIU L, WANG X, et al. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation[J]. Global change biology, 2015, 21(5):2095-2104.
doi: 10.1111/gcb.12812 pmid: 25418963 |
[19] |
AUSTIN A T, SOLEDAD MÉNDEZ M, BALLARÉ C L. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems[J]. Proceedings of the national academy of sciences of the United States of America, 2016, 113(16):4392-4397.
doi: 10.1073/pnas.1516157113 pmid: 27044070 |
[20] |
ZEPP R G, CALLAGHAN T V, ERICKSON III D J. Interactive effects of ozone depletion and climate change on biogeochemical cycles[J]. Photochemical and photobiological sciences, 2003, 2(1):51-61.
pmid: 12659539 |
[21] | REAY D, SMITH P, van AMSTEL A. Methane and climate change[M].London and Washington, D.C:Earthscan, 2010:74-96. |
[22] | LÜTTGE U, BEYSCHLAG W, BÜDEL B, et al. Progress in botany 70[M]. Heidelberg: Springer-Verlag Berlin Heidelberg, 2009:172-190. |
[23] |
REY A, BELELLI-MARCHESINI L, WERE A, et al. Wind as a main driver of the net ecosystem carbon balance of a semiarid Mediterranean steppe in the South East of Spain[J]. Global change biology, 2012, 18(2):539-55.
doi: 10.1111/j.1365-2486.2011.02534.x URL |
[24] |
KING J Y, BRANDT L A, ADAIR E C. Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation[J]. Biogeochemistry, 2012, 111(1-3):57-81.
doi: 10.1007/s10533-012-9737-9 URL |
[25] |
BOND-LAMBERTY B, THOMSON A. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464(7288):579-582.
doi: 10.1038/nature08930 URL |
[26] |
REICHSTEIN M, BEER C. Soil respiration across scales: The importance of a model-data integration framework for data interpretation[J]. Journal of plant nutrition and soil science, 2008, 171(3):344-354.
doi: 10.1002/jpln.200700075 URL |
[27] |
REY A, PEGORARO E, OYONARTE C, et al. Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semi-arid ecosystem in the SE of Spain[J]. Soil biology and biochemistry, 2011, 43(2):393-403.
doi: 10.1016/j.soilbio.2010.11.007 URL |
[28] |
CHEN X M, LIU M Y, XU Z Y, et al. Influences of temperature and moisture on abiotic and biotic soil CO2 emission from a subtropical forest[J]. Carbon balance and management, 2021, 16(18):1-8.
doi: 10.1186/s13021-020-00160-5 URL |
[29] | VARADACHARI C, MITRA S, GHOSH K. Photochemical oxidation of soil organic matter by sunlight[J]. Proceedings of the Indian national science academy, 2017, 83(1):223-229. |
[30] |
LIU S R, HU R G, CAI G C, et al. The role of UV-B radiation and precipitation on straw decomposition and topsoil C turnover[J]. Soil biology and biochemistry, 2014, 77:197-202.
doi: 10.1016/j.soilbio.2014.06.009 URL |
[31] |
WANG J, YANG S, ZHANG B B, et al. Temporal dynamics of ultraviolet radiation impacts on litter decomposition in a semi-arid ecosystem[J]. Plant and soil, 2017, 419(1-2):71-81.
doi: 10.1007/s11104-017-3290-1 URL |
[32] | 蒋梦蝶, 王秋敏, 徐鹏, 等. UV-B辐射增强对土壤有机碳稳定性的影响[J]. 水土保持学报, 2017, 31(2):171-176. |
[33] |
LEE H, RAHN T, THROOP H. An accounting of C-based trace gas release during abiotic plant litter degradation[J]. Global change biology, 2012, 18(3):1185-1195.
doi: 10.1111/j.1365-2486.2011.02579.x URL |
[34] |
LIN Y, KARLEN S D, RALPH J, et al. Short-term facilitation of microbial litter decomposition by ultraviolet radiation[J]. Science of the total environment, 2018, 615:838-848.
doi: 10.1016/j.scitotenv.2017.09.239 URL |
[35] |
AUSTIN A T, BALLARE C L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems[J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107(10):4618-4622.
doi: 10.1073/pnas.0909396107 pmid: 20176940 |
[36] |
FROUZ J, CAJTHAML T, MUDRA´K O. The effect of lignin photodegradation on decomposability of Calamagrostis epigeios grass litter[J]. Biodegradation, 2011, 22(6):1247-1254.
doi: 10.1007/s10532-011-9479-8 URL |
[37] |
JOHNSON D. Response of terrestrial microorganisms to ultraviolet-B radiation in ecosystems[J]. Research in microbiology, 2003, 154(5):315-320.
pmid: 12837506 |
[38] |
DUGUAY K J, KLIRONOMOS J N. Direct and indirect effects of enhanced UV-B radiation on the decomposing and competitive abilities of saprobic fungi[J]. Applied soil ecology, 2000, 14(2):157-164.
doi: 10.1016/S0929-1393(00)00049-4 URL |
[39] |
PANCOTTO V A, SALA O E, CABELLO M, et al. Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community[J]. Global change biology, 2003, 9(10):1465-1474.
doi: 10.1046/j.1365-2486.2003.00667.x URL |
[40] |
RINNAN R, NERG A, AHTONIEMI P, et al. Plant-mediated effects of elevated ultraviolet-B radiation on peat microbial communities of a subarctic mire[J]. Global change biology, 2008, 14(4):925-937.
doi: 10.1111/j.1365-2486.2008.01544.x URL |
[41] |
RINNAN R, GEHRKE C, MICHELSEN A. Two mire species respond differently to enhanced ultraviolet-B radiation: effects on biomass allocation and root exudation[J]. New phytologist, 2006, 169(4):809-818.
pmid: 16441761 |
[42] |
GEHRKE C, JOHANSON U, CALLAGHAN T V, et al. The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic[J]. Oikos, 1995, 72(2):213-222.
doi: 10.2307/3546223 URL |
[43] |
FOEREID B, BELLARBY J, MEIER-AUGENSTEIN W, et al. Does light exposure make plant litter more degradable?[J]. Plant and soil, 2010, 333(1-2):275-285.
doi: 10.1007/s11104-010-0342-1 URL |
[44] | 王秋敏. UV-B辐射对土壤有机碳稳定性的影响[D]. 武汉: 华中农业大学, 2015. |
[45] |
ANESIO A M, TRANVIK L J, LI W G. Production of inorganic carbon from aquatic macrophytes by solar radiation[J]. Ecology, 1999, 80(6):1852-1859.
doi: 10.1890/0012-9658(1999)080[1852:POICFA]2.0.CO;2 URL |
[46] |
WANG Z P, CHANG S X, CHEN H, et al. Widespread non-microbial methane production by organic compounds and the impact of environmental stresses[J]. Earth-science reviews, 2013, 127:193-202.
doi: 10.1016/j.earscirev.2013.10.001 URL |
[47] |
ZEPP R G, ERICKSON III D J, PAUL N D, et al. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks[J]. Photochemical and photobiological sciences, 2011, 10(2):261-279.
doi: 10.1039/c0pp90037k pmid: 21253663 |
[48] |
KEPPLER F, HAMILTON J T G, BRAβ M, et al. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature, 2006, 439(7073):187-191.
doi: 10.1038/nature04420 URL |
[49] |
BLOOM A A, LEE-TAYLOR J, MADRONICH S, et al. Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage[J]. New phytologist, 2010, 187(2):417-425.
doi: 10.1111/j.1469-8137.2010.03259.x pmid: 20456057 |
[50] | SCHUTZ H, SEILER W, Conrad R. Processes involved in formation and emission of methane in rice paddies[J]. Biogeochemistry, 1989, 7(1):33-53. |
[51] |
WASSMANN R, AULAKH M S. The role of rice plants in regulating mechanisms of methane missions[J]. Biology and fertility of soils, 2000, 31(1):20-29.
doi: 10.1007/s003740050619 URL |
[52] |
BORNMAN J F, BARNES P W, ROBINSON S A, et al. Solar ultraviolet radiation and ozone depletion driven climate change: effects on terrestrial ecosystems[J]. Photochemical and photobiological sciences, 2015, 14(1):88-107.
doi: 10.1039/c4pp90034k URL |
[53] |
KEPPLER F, HAMILTON J T G, MCROBERTS W C, et al. Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies[J]. New Phytologist, 2008, 178(4):808-814.
doi: 10.1111/j.1469-8137.2008.02411.x pmid: 18346110 |
[54] |
BRUHNA D, MØLLER I M, MIKKELSEN T N, et al. Terrestrial plant methane production and emission[J]. Physiologia plantarum, 2012, 144(3):201-209.
doi: 10.1111/j.1399-3054.2011.01551.x URL |
[55] |
MCLEOD A R, FRY S C, LOAKE G J, et al. Ultraviolet radiation drives methane emissions from terrestrial plant pectins[J]. New phytologist, 2008, 180(1):124-132.
doi: 10.1111/j.1469-8137.2008.02571.x pmid: 18657215 |
[56] |
MESSENGER D J, MCLEOD A R, FRY S C. The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin[J]. Plant, cell and environment, 2009, 32(1):1-9.
doi: 10.1111/j.1365-3040.2008.01892.x URL |
[57] |
ALTHOFF F, JUGOLD A, KEPPLER F. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide[J]. Chemosphere, 2010, 80(3):286-292.
doi: 10.1016/j.chemosphere.2010.04.004 pmid: 20444486 |
[58] |
RINNAN R, GEHRKE C, MICHELSEN A. Two mire species respond differently to enhanced ultraviolet-B radiation: effects on biomass allocation and root exudation[J]. New phytologist, 2006, 169(4):809-818.
pmid: 16441761 |
[59] |
KATO-NOGUCHI H, KUJIME H, INO T. UV-induced momilactone B accumulation in rice rhizosphere[J]. Journal of plant physiology, 2007, 164(11):1548-1551.
doi: 10.1016/j.jplph.2006.12.008 URL |
[60] |
AULAKH M S, WASSMANN R, BUENO C, et al. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars[J]. Plant biology, 2001, 3(2):139-148.
doi: 10.1055/s-2001-12905 URL |
[61] |
KERDCHOECHUEN O. Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield[J]. Agriculture, ecosystems and environment, 2005, 108(2):155-163.
doi: 10.1016/j.agee.2005.01.004 URL |
[62] |
HE Y M, ZHAN F D, LI Y, et al. Effect of enhanced UV-B radiation on methane emission in a paddy field and rice root exudation of low-molecular-weight organic acids[J]. Photochemical and photobiological sciences, 2016, 15(6):735-743.
doi: 10.1039/c6pp00023a pmid: 27194164 |
[63] |
MÖRSKY S K, HAAPALA J K, RINNAN R, et sl. Minor long-term effects of ultraviolet-B radiation on methane dynamics of a subarctic fen in Northern Finland[J]. Biogeochemistry, 2012, 108(1-3):233-243.
doi: 10.1007/s10533-011-9593-z URL |
[64] |
RINNAN R, SAARNIO S, HAAPALA J K, et al. Boreal peatland ecosystems under enhanced UV-B radiation and elevated tropospheric ozone concentration[J]. Environmental and experimental botany, 2013, 90:43-52.
doi: 10.1016/j.envexpbot.2012.10.009 URL |
[65] |
RINNAN R, NERG A M, AHTONIEMI P, et al. Plant-mediated effects of elevated ultraviolet-B radiation on peat microbial communities of a subarctic mire[J]. Global change biology, 2008, 14(4):925-937.
doi: 10.1111/j.1365-2486.2008.01544.x URL |
[66] | 徐渭渭, 何永美, 湛方栋, 等. UV-B辐射增强对元阳哈尼梯田稻田CH4排放规律的影响[J]. 生态学报, 2015, 35(5):1329-1336. |
[67] | 王灿, 李虹如, 湛方栋, 等. UV-B辐射对元阳梯田稻田土壤活性有机碳含量与温室气体排放的影响[J]. 农业环境科学学报, 2018, 37(2):383-391. |
[68] | 杨燕华, 谢锦升, 江军, 等. 光照与紫外辐射对亚热带树木叶片排放CH4的影响[J]. 亚热带资源与环境学报, 2012, 7(4):64-70. |
[69] | 胡正华, 凌慧, 陈书涛, 等. UV-B增强对稻田呼吸速率、CH4和N2O排放的影响[J]. 环境科学, 2011, 32(10):3018-3022. |
[70] | 张秀君. 土壤N2O产生的微生物过程[J]. 沈阳教育学院学报, 2005, 7(1):129-131. |
[71] |
WUEBBLES D J. Nitrous oxide: no laughing matter[J]. Science, 2009, 326(5949):56-57.
doi: 10.1126/science.1179571 URL |
[72] |
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892.
doi: 10.1126/science.1136674 pmid: 18487183 |
[73] |
SPARKS J P. Ecological ramifications of the direct foliar uptake of nitrogen[J]. Oecologia, 2009, 159(1):1-13.
doi: 10.1007/s00442-008-1188-6 pmid: 18975011 |
[74] |
CALDWELL M M, BORNMAN J F, BALLARÉ C L, et al. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors[J]. Photochemical and photobiological sciences, 2007, 6(3):252-266.
pmid: 17344961 |
[75] | HARI P, RAIVONEN M, VESALA T, et al. Ultraviolet light and leaf emission of NOx[J]. Atmospheric science, 2003, 422(6928):134-134. |
[76] |
RAIVONEN M, BONN B, SANZ M J, et al. UV-induced NOy emissions from Scots pine: could they originate from photolysis of deposited HNO3?[J]. Atmospheric environment, 2006, 40(32):6201-6213.
doi: 10.1016/j.atmosenv.2006.03.063 URL |
[77] |
HU Z H, JIANG J Y, CHEN S T, et al. Effects of enhanced UV-B radiation on N2O emission in a soil-water wheat system[J]. Water, air, and soil pollution, 2010, 213:493-499.
doi: 10.1007/s11270-010-0404-2 URL |
[78] | 肇思迪, 娄运生, 张祎玮, 等. UV-B增强下施硅对稻田CH4和N2O排放及其增温潜势的影响[J]. 生态学报 2017, 37(14):4715-4724. |
[79] | ASAO S, PARTON W J, CHEN M, et al. Photodegradation accelerates ecosystem N cycling in a simulated California grassland[J]. Ecosphere, 2018, 9(8):1-18. |
[80] | 徐鹏, 王秋敏, 蒋梦蝶, 等. UV-B 辐射促进红壤水稻土中碳氮转化[J]. 农业环境科学学报, 2017, 36(4):793-798. |
[81] | 张彦雪, 何永美, 李想, 等. UV-B辐射增强对稻田土壤氮转化的影响[J]. 农业环境科学学报, 2020, 39(3):656-664. |
[82] | 胡正华, 蒋静艳, 牛传坡, 等. 地表UV-B辐射增强对土壤-大豆系统N2O排放的影响[J]. 生态学报, 2009, 29(12):6754-6763. |
[83] | 方泽涛, 李伏生, 刘靖雯, 等. 不同灌溉模式和施氮处理下稻田N2O排放与反硝化酶活性的关系[J]. 应用与环境生物学报, 2017, 23(6):1059-1066. |
[84] | SCHADE G W, HOFMANN R, CRUTZEN P J. CO emissions from degrading plant matter[J]. Chemical and physical meteorology, 1999, 51(5):889-908. |
[85] |
BRANDT L A, KING J Y, MILCHUNAS D G. Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem[J]. Global change biology, 2007, 13(10):2193-2205.
doi: 10.1111/j.1365-2486.2007.01428.x URL |
[86] |
MOODY S A, NEWSHAM K K, AYRES P G, et al. Variation in the responses of litter and phylloplane fungi to UV-B radiation (290-315 nm)[J]. Mycological research, 1999, 103(11):1469-1477.
doi: 10.1017/S0953756299008783 URL |
[87] |
ALMAGRO M, MAESTRE F T, MARTÍNEZ-OPEZ J, et al. Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands[J]. Soil biology and biochemistry, 2015, 90:214-223.
doi: 10.1016/j.soilbio.2015.08.006 URL |
[88] |
WUA C S, ZHANG Z J, WANG H K, et al. Photodegradation accelerates coarse woody debris decomposition in subtropical Chinese forests[J]. Forest ecology and management, 2018, 409:225-232.
doi: 10.1016/j.foreco.2017.10.060 URL |
[89] |
BAIS A F, LUCAS R M, BORNMAN J F, et al. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP environmental effects assessment panel, update 2017[J]. Photochemical and photobiological sciences, 2018, 17(2):127-179.
doi: 10.1039/c7pp90043k pmid: 29404558 |
[1] | 吴松, 刘永志, 杨立宾, 江云兵, 周甜. 森林温室气体排放的研究态势分析[J]. 中国农学通报, 2022, 38(19): 99-108. |
[2] | 张玉红,陈路瑶,刘 彤,高欣,张锡国. 增补UV-B辐射对药用植物黄檗幼苗生长及光合生理影响[J]. 中国农学通报, 2018, 34(4): 76-82. |
[3] | 王国强,孙焕明,郭 琰. 生物炭对稻田温室气体CH4和N2O排放的影响综述[J]. 中国农学通报, 2018, 34(27): 118-123. |
[4] | 董雄德,邢亚娟,闫国永,王庆贵. 不同生态系统凋落物分解对氮沉降的响应综述[J]. 中国农学通报, 2016, 32(22): 140-150. |
[5] | 周平. 植物对UV-B辐射增强的响应及其分子机制[J]. 中国农学通报, 2015, 31(13): 159-163. |
[6] | 杨湉,杨金汉,陈宗瑜,谭淑文,王娟. 烤烟δ13C值及碳氮代谢对增强UV-B辐射的响应[J]. 中国农学通报, 2014, 30(31): 64-70. |
[7] | 方媛 于海宁 程 曦 路 洁 彭 励. 增强UV-B辐射对甘草种子萌发及幼苗形态的影响[J]. 中国农学通报, 2010, 26(2): 122-126. |
[8] | 娄运生 程焕友. UV-B辐射增强下施氮对大麦土壤微生物量碳、氮的影响[J]. 中国农学通报, 2010, 26(13): 219-224. |
[9] | 高永刚,赵先丽,温秀卿,郭立峰,李宇光,王秋京. 黑龙江省陆地生态系统生产力及人口承载力分析[J]. 中国农学通报, 2009, 25(7): 239-242. |
[10] | 吴杏春,陈裕坤,李奇松,方长旬,熊 君,林文雄. 硅营养对UV-B辐射条件下水稻酚类代谢的影响[J]. 中国农学通报, 2009, 25(24): 225-230. |
[11] | 张静 王进 田丽萍. 紫外线(UV-B)辐射增强对植物生长的研究进展[J]. 中国农学通报, 2009, 25(22): 0-0. |
[12] | 潘淑颖,高宝玉,岳钦艳,辛佳,于洪艳,冯秀娟. 光催化降解表土层中DDT的影响因素研究[J]. 中国农学通报, 2008, 24(10): 515-520. |
[13] | 李海涛,廖迎春,董 铭,梁 涛. 田间可调式UV-B辐射增强对籼型杂交稻“协优432”生长及产量的影响[J]. 中国农学通报, 2006, 22(6): 349-349. |
[14] | 许 莹,殷 红,毛晓燕. UV-B辐射增加对水稻生长发育及产量的影响[J]. 中国农学通报, 2006, 22(4): 411-411. |
[15] | 胡正华,索福喜,赵晓莉,郑有飞. UV-B辐射增加与酸雨复合处理对菠菜种子 萌发和幼苗生长的影响[J]. 中国农学通报, 2005, 21(6): 284-284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||