中国农学通报 ›› 2022, Vol. 38 ›› Issue (19): 99-108.doi: 10.11924/j.issn.1000-6850.casb2022-0181
所属专题: 农业气象
吴松1(), 刘永志2, 杨立宾3(
), 江云兵3, 周甜3
收稿日期:
2022-03-17
修回日期:
2022-06-03
出版日期:
2022-07-05
发布日期:
2022-07-13
通讯作者:
杨立宾
作者简介:
吴松,女,1982年出生,黑龙江哈尔滨人,副研究员,博士在读,主要从事科技情报研究工作。通信地址:150028 哈尔滨市松北区创新三路600号 黑龙江省科学技术情报研究院,Tel:0451-51920677,E-mail: 基金资助:
WU Song1(), LIU Yongzhi2, YANG Libin3(
), JIANG Yunbing3, ZHOU Tian3
Received:
2022-03-17
Revised:
2022-06-03
Online:
2022-07-05
Published:
2022-07-13
Contact:
YANG Libin
摘要:
为了解森林温室气体排放的研究现状及发展趋势,基于文献计量学方法,借助VOSviewer和Citespace工具对Web of Science核心数据库中2017—2021年发表的文献进行统计和可视化分析。结果表明:(1)全球森林温室气体排放研究领域的文献逐年增长,且高发文期刊的影响因子较高。中国和美国的发文量远超其他国家,两国之间合作最为密切,且与其他核心国家几乎都有合作关系。(2)中国科学院、中国科学院大学和中国林业科学院的发文量进入世界前10名,在全球影响力较大,同时也是国内最主要的研究力量。(3)来自德国的Corre M D和Veldkamp E作发文量与中国的Peng Ch发文量并列第一,同一聚类内的作者合作较多,但不同聚类作者之间的交流仍然需要加强。(4)全球气候变暖与森林土地利用的改变对温室气体排放的规律和作用机制,以及如何完善数据模型和提高监测技术手段是该领域的研究重点和热点。因此,鉴于中国在该研究领域的较高综合实力,如何更加准确地确定国内森林碳储量分布显得尤为重要,为促进“碳中和”目标的实现,碳汇交易机制的确立及城市碳交易市场的试点和普及将是未来的重要工作。
中图分类号:
吴松, 刘永志, 杨立宾, 江云兵, 周甜. 森林温室气体排放的研究态势分析[J]. 中国农学通报, 2022, 38(19): 99-108.
WU Song, LIU Yongzhi, YANG Libin, JIANG Yunbing, ZHOU Tian. Research Trend Analysis of Forest Greenhouse Gas Emissions[J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 99-108.
序号 | 机构 | 作者 | |||
---|---|---|---|---|---|
名称 | 发文量/篇 | 姓名 | 发文量/篇 | ||
1 | 中国科学院(Chinese Academy of Sciences) | 78 | Peng Ch | 11 | |
2 | 中国科学院大学(University of Chinese Academy of Sciences) | 32 | Corre M D | 11 | |
3 | 赫尔辛基大学(University of Helsinki) | 23 | Veldkamp E | 11 | |
4 | 俄罗斯科学院(Russian Academy of Sciences) | 23 | Machacova K | 8 | |
5 | 兰斯卡特大学(University of Lancaster) | 18 | Sjogersten S | 8 | |
6 | 东芬兰大学(University of Eastern Finland) | 18 | Berninger F | 7 | |
7 | 瑞典农业科学大学(Swedish University of Agricultural Sciences) | 17 | Maher D T | 7 | |
8 | 中国林业科学研究院(Chinese Academy of Forestry) | 16 | Hirano T | 7 | |
9 | 圣保罗大学(Universidade de Sao Paulo) | 15 | Vargas R | 7 | |
10 | 北海道大学(Hokkaido University) | 15 | Minkkinen K | 6 |
序号 | 机构 | 作者 | |||
---|---|---|---|---|---|
名称 | 发文量/篇 | 姓名 | 发文量/篇 | ||
1 | 中国科学院(Chinese Academy of Sciences) | 78 | Peng Ch | 11 | |
2 | 中国科学院大学(University of Chinese Academy of Sciences) | 32 | Corre M D | 11 | |
3 | 赫尔辛基大学(University of Helsinki) | 23 | Veldkamp E | 11 | |
4 | 俄罗斯科学院(Russian Academy of Sciences) | 23 | Machacova K | 8 | |
5 | 兰斯卡特大学(University of Lancaster) | 18 | Sjogersten S | 8 | |
6 | 东芬兰大学(University of Eastern Finland) | 18 | Berninger F | 7 | |
7 | 瑞典农业科学大学(Swedish University of Agricultural Sciences) | 17 | Maher D T | 7 | |
8 | 中国林业科学研究院(Chinese Academy of Forestry) | 16 | Hirano T | 7 | |
9 | 圣保罗大学(Universidade de Sao Paulo) | 15 | Vargas R | 7 | |
10 | 北海道大学(Hokkaido University) | 15 | Minkkinen K | 6 |
序号 | 期刊 | 中科院分区 | 发文量/篇 |
---|---|---|---|
1 | 《Science of the Total Environment》 | 2 | 45 |
2 | 《Forests》 | 3 | 41 |
3 | 《Global Change Biology》 | 1 | 30 |
4 | 《Biogeosciences》 | 2 | 25 |
5 | 《Journal of Geophysical Research-Biogeosciences》 | 3 | 20 |
6 | 《Agricultural and Forest Meteorology》 | 1 | 19 |
7 | 《Biogeochemistry》 | 2 | 16 |
8 | 《Scientific Reports》 | 3 | 15 |
9 | 《Forest Ecology and Management》 | 2 | 15 |
10 | 《Soil Biology & Biochemistry》 | 1 | 14 |
10 | 《Ecosystems》 | 2 | 14 |
序号 | 期刊 | 中科院分区 | 发文量/篇 |
---|---|---|---|
1 | 《Science of the Total Environment》 | 2 | 45 |
2 | 《Forests》 | 3 | 41 |
3 | 《Global Change Biology》 | 1 | 30 |
4 | 《Biogeosciences》 | 2 | 25 |
5 | 《Journal of Geophysical Research-Biogeosciences》 | 3 | 20 |
6 | 《Agricultural and Forest Meteorology》 | 1 | 19 |
7 | 《Biogeochemistry》 | 2 | 16 |
8 | 《Scientific Reports》 | 3 | 15 |
9 | 《Forest Ecology and Management》 | 2 | 15 |
10 | 《Soil Biology & Biochemistry》 | 1 | 14 |
10 | 《Ecosystems》 | 2 | 14 |
关键词 | 频次 | 中心度 | 关键词 | 频次 | 中心度 |
---|---|---|---|---|---|
二氧化碳(carbon dioxide) | 219 | 0.19 | 通量(fluxe) | 112 | 0.05 |
甲烷(methane) | 159 | 0.09 | 气候改变(climate change) | 112 | 0.03 |
氧化亚氮(nitrous oxide) | 155 | 0.19 | 呼吸(respiration) | 103 | 0.21 |
排放(emission) | 125 | 0.05 | 温室气体排放(greenhouse gas emission) | 103 | 0.05 |
森林(forest) | 114 | 0.18 | 氧化亚氮排放(nitrous oxide emission) | 100 | 0.20 |
关键词 | 频次 | 中心度 | 关键词 | 频次 | 中心度 |
---|---|---|---|---|---|
二氧化碳(carbon dioxide) | 219 | 0.19 | 通量(fluxe) | 112 | 0.05 |
甲烷(methane) | 159 | 0.09 | 气候改变(climate change) | 112 | 0.03 |
氧化亚氮(nitrous oxide) | 155 | 0.19 | 呼吸(respiration) | 103 | 0.21 |
排放(emission) | 125 | 0.05 | 温室气体排放(greenhouse gas emission) | 103 | 0.05 |
森林(forest) | 114 | 0.18 | 氧化亚氮排放(nitrous oxide emission) | 100 | 0.20 |
聚类编号 | 同质性 | 平均年份 | 研究主题 |
---|---|---|---|
#0 | 0.710 | 2018 | 土壤呼吸(soil respiration)、二氧化碳通量(carbon dioxide fluxe)、有机质(Organic matter)、降解(Decomposition)、甲烷通量(methane fluxe) |
#1 | 0.752 | 2018 | 模型(model)、缓解(mitigation)、温室气体通量(greenhouse gas fluxe)、伐木制品(harvested wood products)、北方森林(boreal forest) |
#2 | 0.903 | 2017 | 氧化亚氮(nitrous oxide)、甲烷(methane)、二氧化碳(carbon dioxide)、反硝化作用(denitrification)、温室气体(greenhouse gas) |
#3 | 0.71 | 2017 | 热带森林(tropical forest)、气候(climate)、碳储量(carbon storage)、储存量(storage)、生物量(biomas) |
#4 | 0.772 | 2018 | 森林砍伐(deforestation)、碳固存(carbon sequestration)、森林(forest)、降解(degradation)、土地利用(land-use) |
#5 | 0.851 | 2018 | 碳(carbon)、通量(fluxe)、土壤含水量(soil water content)、草地(grassland)、碳固存(carbon sequestration) |
聚类编号 | 同质性 | 平均年份 | 研究主题 |
---|---|---|---|
#0 | 0.710 | 2018 | 土壤呼吸(soil respiration)、二氧化碳通量(carbon dioxide fluxe)、有机质(Organic matter)、降解(Decomposition)、甲烷通量(methane fluxe) |
#1 | 0.752 | 2018 | 模型(model)、缓解(mitigation)、温室气体通量(greenhouse gas fluxe)、伐木制品(harvested wood products)、北方森林(boreal forest) |
#2 | 0.903 | 2017 | 氧化亚氮(nitrous oxide)、甲烷(methane)、二氧化碳(carbon dioxide)、反硝化作用(denitrification)、温室气体(greenhouse gas) |
#3 | 0.71 | 2017 | 热带森林(tropical forest)、气候(climate)、碳储量(carbon storage)、储存量(storage)、生物量(biomas) |
#4 | 0.772 | 2018 | 森林砍伐(deforestation)、碳固存(carbon sequestration)、森林(forest)、降解(degradation)、土地利用(land-use) |
#5 | 0.851 | 2018 | 碳(carbon)、通量(fluxe)、土壤含水量(soil water content)、草地(grassland)、碳固存(carbon sequestration) |
[1] |
JOHN B, SONALDE D, DENNIS H, et al. Intergovernmental Panel on Climate Change Special Report on Global Warming of 1.5℃ Switzerland : IPCC, 2018[J]. Population and development review, 2019, 45(1):251-252.
doi: 10.1111/padr.12234 URL |
[2] |
MILLER A D, DIETZE M C, DELUCIA E H, et al. Alteration of forest succession and carbon cycling under elevated CO2[J]. Global change biology, 2016, 22(1):351-363.
doi: 10.1111/gcb.13077 URL |
[3] |
CREIGHTON M L, JAMES W R, MICHAEL G R. Carbon allocation in forest ecosystems[J]. Global change biology, 2007, 13(10):2089-2109.
doi: 10.1111/j.1365-2486.2007.01420.x URL |
[4] | EGLE K, KAJAR K, FRANK B, et al. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada[J]. Science of the total environment, 2017, 601:895-905. |
[5] |
BENJAMIN W S, THOMAS E K, STEPHEN C H, et al. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA[J]. Biogeochemistry, 2011, 104(1/3):251-265.
doi: 10.1007/s10533-010-9499-1 URL |
[6] |
YONGWON K, NORIYUKI T. Effect of forest fire on the fluxes of CO2, CH4 and N2O in boreal forest soils, interior Alaska[J]. Journal of geophysical research: Atmospheres, 2003, 108(D1):8154.
doi: 10.1029/2001JD000663 URL |
[7] | MATHEUS F S. The role of forests and protected areas in climate change mitigation: a review and critique of the ecosystem services and REDD+ approaches[J]. Desenvolvimento e meio ambiente, 2018, 46:23-36. |
[8] |
COBLE K H, MISHRA A K, FERRELL S, et al. Big data in agriculture: A challenge for the future[J]. Applied economic perspectives and policy, 2018, 40(1):79-96.
doi: 10.1093/aepp/ppx056 URL |
[9] | 丁恩俊, 谢佳, 申丽娟, 等. 基于文献计量的国内外农业信息化研究态势分析[J]. 西南大学学报:自然科学版, 2017, 39(8):116-125. |
[10] | 覃诚, 方向明, 陈典. 中国农村产业融合发展研究现状与展望——基于CiteSpace文献计量分析[J]. 中国农业大学学报, 2021, 26(10):198-208. |
[11] | 牛善栋, 吕晓. 基于文献计量的中国耕地保护补偿研究进展分析[J]. 土壤, 2018, 50(1):195-201. |
[12] |
SCHULTEUEBBING L F, ROS G H, de VRIES W. Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon sequestration[J]. Global change biology, 2021, 28(3):899-917.
doi: 10.1111/gcb.15960 URL |
[13] |
RYHTI K, KULMALA L, PUMPANEN J, et al. Partitioning of forest floor CO2 emissions reveals the belowground interactions between different plant groups in a Scots pine stand in southern Finland[J]. Agricultural and forest meteorology, 2021, 297:108266.
doi: 10.1016/j.agrformet.2020.108266 URL |
[14] |
KYASCHENKO J, OVANSKAINEN O, EKBLAD A, et al. Soil fertility in boreal forest relates to root-driven nitrogen retention and carbon sequestration in the mor layer[J]. The new phytologist, 2019, 221(3):1492-1502.
doi: 10.1111/nph.15454 URL |
[15] |
SOKOL N W, BRADFORD M A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input[J]. Nature geoscience, 2019, 12(1):46-53.
doi: 10.1038/s41561-018-0258-6 URL |
[16] |
YANG L, ASHLEY N C, AMRITA B, et al. Differential effects of redox conditions on the decomposition of litter and soil organic matter[J]. Biogeochemistry, 2021, 154(1):1-15.
doi: 10.1007/s10533-021-00790-y URL |
[17] |
RODTASSANA C, UNAWONG W, YAEMPHUM S, et al. Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest[J]. Ecology and evolution, 2021, 11(21):15430-15443.
doi: 10.1002/ece3.8248 URL |
[18] |
JIANG Z, BIAN H, XU L, et al. Effects of pulse precipitation on soil organic matter mineralization in forests: spatial variation and controlling factors[J]. Journal of plant ecology, 2021, 14(5):970-980.
doi: 10.1093/jpe/rtab057 URL |
[19] | VERCHOT L V, DANNENMANN M, KENGDO S K, et al. Land-use change and biogeochemical controls of soil CO2, N2O and CH4 fluxes in Cameroonian forest landscapes[J]. Journal of integrative environmental sciences, 2020, 17(3):45-67. |
[20] |
NNNES L J R, MEIRELES C I R, GOMES C J P, et al. Forest contribution to climate change mitigation: Management oriented to carbon capture and storage[J]. Climate, 2020, 8(2):21.
doi: 10.3390/cli8020021 URL |
[21] |
GUSTAVSSON L, HAUS S, LUNDBLAD M, et al. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels[J]. Renewable and sustainable energy reviews, 2017, 67:612-624.
doi: 10.1016/j.rser.2016.09.056 URL |
[22] |
COOMES D, ALLEN R, SCOTT N, et al. Designing systems to monitor carbon stocks in forests and shrublands[J]. Forest ecology and management, 2002, 164(1/3):89-108.
doi: 10.1016/S0378-1127(01)00592-8 URL |
[23] |
Li M, Cui Y, Fu Y, et al. Simulating the potential sequestration of three major greenhouse gases in China's natural ecosystems[J]. Forests, 2020, 11(2):128.
doi: 10.3390/f11020128 URL |
[24] |
CADE S M, CLEMITSHAW K C, MOLINAHERRERA S, et al. Evaluation of LandscapeDNDC model predictions of CO2 and N2O fluxes from an oak forest in SE England[J]. Forests, 2021, 12(11):1517.
doi: 10.3390/f12111517 URL |
[25] |
SILJANDER R, EKHOLM T. Integrated scenario modelling of energy, greenhouse gas emissions and forestry[J]. Mitigation and adaptation strategies for global change, 2018, 23(5):783-802.
doi: 10.1007/s11027-017-9759-7 URL |
[26] |
SILJANEN H M P, WELTI N, VOIGT C, et al. Atmospheric impact of nitrous oxide uptake by boreal forest soils can be comparable to that of methane uptake[J]. Plant and soil, 2020, 454(1/2):121-138.
doi: 10.1007/s11104-020-04638-6 URL |
[27] | SONG X, PENG C, CIAIS P, et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest[J]. Science advances, 2020, 6(12):w5790. |
[28] |
SONG L, TIAN P, ZHANG J, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Science of the total environment, 2017, 609:1303-1311.
doi: 10.1016/j.scitotenv.2017.08.017 URL |
[29] |
LI Y, HU S, CHEN J, et al. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review[J]. Journal of soils and sediments, 2018, 18(2):546-563.
doi: 10.1007/s11368-017-1906-y URL |
[30] |
POKHAREL P, KWAK J H, YONG S O, et al. Pine sawdust biochar reduces GHG emission by decreasing microbial and enzyme activities in forest and grassland soils in a laboratory experiment[J]. Science of the total environment, 2018, 625:1247-1256.
doi: 10.1016/j.scitotenv.2017.12.343 URL |
[31] |
AYAYEE P A, TAURA J, ROBERTO A A, et al. Patterns of denitrification and methanogenesis rates from vernal pools in a temperate forest driven by seasonal, microbial functional gene abundances, and soil chemistry[J]. Wetlands, 2020, 40(4):721-731.
doi: 10.1007/s13157-019-01225-z URL |
[32] |
GRUENING M M, GERMESHAUSEN F, THIES C, et al. Increased forest soil CO2 and N2O emissions during insect infestation[J]. Forests, 2018, 9(10):612.
doi: 10.3390/f9100612 URL |
[33] |
SA M F, SCHAEFER C E G R, LOUREIRO D C, et al. Fluxes of CO2, CH4, and N2O in tundra-covered and Nothofagus forest soils in the Argentinian Patagonia[J]. Science of the total environment, 2019, 659:401-409.
doi: 10.1016/j.scitotenv.2018.12.328 URL |
[34] |
WU X, ZANG S, MA D, et al. Emissions of CO2, CH4, and N2O fluxes from forest soil in permafrost region of Daxing'an Mountains, Northeast China[J]. International journal of environmental research and public health, 2019, 16(16):2999.
doi: 10.3390/ijerph16162999 URL |
[35] | MANNAN A, FENG Z, AHAMAD A, et al. CO2 emission trends and risk zone mapping of forest fires in subtropical and moist temperate forests of Pakistan[J]. Global warming focus, 2019, 17(2):2983-3002. |
[36] |
MCROBERTS R E, NAESSET E, SANNIER C, et al. Remote sensing support for the gain-loss approach for greenhouse gas inventories[J]. Remote sensing, 2020, 12(11):1891.
doi: 10.3390/rs12111891 URL |
[37] |
NOOJIPADY P, MORTON D C, MACEDO M N, et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome[J]. Environmental research letters, 2017, 12(2):25004.
doi: 10.1088/1748-9326/aa5986 URL |
[38] | ASNER G P, POWELL G V N, MASCARO J, et al. High-resolution forest carbon stocks and emissions in the Amazon[J]. Proceedings of the national academy of sciences of the United States of America, 2010, 107(38):16738-16742. |
[39] |
BOGAERTS M, CIRHIGIRI L, ROBINSON I, et al. Climate change mitigation through intensified pasture management: Estimating greenhouse gas emissions on cattle farms in the Brazilian Amazon[J]. Journal of cleaner production, 2017, 162:1539-1550.
doi: 10.1016/j.jclepro.2017.06.130 URL |
[40] |
BERNARDINO A F, NÓBREGA G N, FERREIRA T O. Consequences of terminating mangrove’s protection in Brazil[J]. Marine policy, 2021, 125:104389.
doi: 10.1016/j.marpol.2020.104389 URL |
[41] |
SASMITO S D, TAILLARDAT P, CKENDENNING J N, et al. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review[J]. Global change biology, 2019, 25(12):4291-4302.
doi: 10.1111/gcb.14774 URL |
[42] |
HAN M, ZHU B. Changes in soil greenhouse gas fluxes by land use change from primary forest[J]. Global change biology, 2020, 26(4):2656-2667.
doi: 10.1111/gcb.14993 URL |
[43] |
LIU M, LIU M, LI P, et al. Variations in soil organic carbon decompositions of different land use patterns on the tableland of Loess Plateau[J]. Environmental science and pollution research, 2020, 27(4):4337-4352.
doi: 10.1007/s11356-019-07099-2 URL |
[44] |
ZHOU M, WANG X, REN X, et al. Afforestation and deforestation enhanced soil CH4 uptake in a subtropical agricultural landscape: Evidence from multi-year and multi-site field experiments[J]. Science of the total environment, 2019, 662:313-323.
doi: 10.1016/j.scitotenv.2019.01.247 URL |
[45] |
RICHARDS M, POGSON M, DONDINI M, et al. High-resolution spatial modelling of greenhouse gas emissions from land-use change to energy crops in the United Kingdom[J]. GCB bioenergy, 2017, 9(3):627-644.
doi: 10.1111/gcbb.12360 URL |
[46] |
XIE Y, HOU Z, LIU H, et al. The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water-Energy-Food (WEF) framework towards China’s carbon neutrality by 2060[J]. Environmental earth sciences, 2021, 80(14):468.
doi: 10.1007/s12665-021-09762-9 URL |
[1] | 吴松, 周甜, 杨立宾, 江云兵, 潘虹, 刘永志, 杜君. 基于VOSviewer的叶际微生物研究现状可视化分析[J]. 中国农学通报, 2023, 39(1): 142-150. |
[2] | 陈和敏, 肖文芳, 陈和明, 吕复兵, 朱根发, 李宗艳, 李佐. 基于CiteSpace的兰花保鲜研究进展及可视化分析[J]. 中国农学通报, 2023, 39(1): 151-164. |
[3] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[4] | 喻家玥, 陈娆, 贾天宇. 农民专业合作社社员满意度及其影响因素研究——以北京市怀柔区为例[J]. 中国农学通报, 2022, 38(6): 141-148. |
[5] | 汪小飞, 张家伟, 刘铁宁, 任小龙, 贾志宽, 蔡铁. 小麦抗倒伏研究动态追踪——基于WoS和CNKI数据库的文献计量分析[J]. 中国农学通报, 2022, 38(5): 132-142. |
[6] | 张欣蕊, 冯启鑫, 安绮沄, 程丽, 李冲伟. 基于Web of Science紫苏研究进展与态势分析[J]. 中国农学通报, 2022, 38(4): 144-152. |
[7] | 肖文敏, 张虹, 任志红, 吴焕焕, 杨圣祥, 王俊杰, 孙海伟. 遮光颜色对夏季北方茶园的影响[J]. 中国农学通报, 2022, 38(4): 36-45. |
[8] | 王爱姣, 叶春蕾, 牛为民, 车发展. 2002—2022年国内外虎杖研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(35): 134-140. |
[9] | 孙喜军, 邓睿, 吕爽, 高莹, 蔡苗, 缑巧红, 赵娟. 西安市农用地土壤有机质空间变异特征[J]. 中国农学通报, 2022, 38(35): 43-53. |
[10] | 王琰, 胥美美, 单连慧, 苟欢, 童俞嘉, 安新颖. 基于文献专利计量的重大植物疫情领域态势分析[J]. 中国农学通报, 2022, 38(34): 144-154. |
[11] | 孙铭阳, 徐世强, 张闻婷, 顾艳, 梅瑜, 李静宇, 周芳, 王继华. 国内外穿心莲研究态势分析[J]. 中国农学通报, 2022, 38(34): 155-164. |
[12] | 周庭宇, 肖洋, 黄庆阳, 谢宸, 罗优. 森林凋落物分解的研究进展与展望[J]. 中国农学通报, 2022, 38(33): 44-51. |
[13] | 程璐, 文永莉, 程曼. UV-B辐射增强对陆地生态系统温室气体排放影响的研究进展[J]. 中国农学通报, 2022, 38(33): 80-88. |
[14] | 田雨桐, 韩志伟, 赵然, 田永著, 罗广飞, 杨淼. 西南岩溶农业区典型土地利用对土壤氮素特征的影响[J]. 中国农学通报, 2022, 38(33): 89-96. |
[15] | 张博, 石峰, 宋福强. AMF复合菌剂对寒地水稻光合作用和生长效应的影响[J]. 中国农学通报, 2022, 38(33): 15-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||