| [1] | 赵亚南, 黄大野, 杨丹, 等. 烟草黑胫病研究进展[J]. 湖北农业科学, 2022, 61(S1):25-28,66. | 
																													
																						| [2] | 陈瑞泰, 朱贤朝, 王智发, 等. 全国16个主产烟省(区)烟草侵染性病害调研报告[J]. 中国烟草科学, 1997(4):3-9. | 
																													
																						| [3] | 范志朋. 遵义市烟草黑胫病发病规律与化学防治研究[D]. 合肥: 安徽农业大学, 2020. | 
																													
																						| [4] | 高文华, 李江美. 烟草黑胫病防治研究进展[J]. 热带农业科技, 2020, 43(1):50-54. | 
																													
																						| [5] | 李永平, 肖炳光, 焦芳婵, 等. 烤烟新品种云烟97的选育及其特征特性[J]. 中国烟草科学, 2012, 33(4):28-31. | 
																													
																						| [6] | 李永平, 王颖宽, 马文广, 等. 烤烟新品种云烟87的选育及特征特性[J]. 中国烟草科学, 2001(4):38-42. | 
																													
																						| [7] | 张永春, 黄镇, 关国经, 等. 不同农业生态调控措施对烟草青枯病的影响[J]. 中国烟草科学, 2007(4):49-52. | 
																													
																						| [8] | 赵显阳, 盘柳依, 陈明, 等. 茉莉酸甲酯对辣椒抗青枯病的诱导效应及抗氧化酶活性的影响[J]. 植物保护学报, 2018, 45(5):1103-1111. | 
																													
																						| [9] | GAO Y F, LIU J K, YANG F M, et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiologia plantarum, 2020,168:98-117. | 
																													
																						| [10] | 韩宇婷, 陈晓晶, 徐忠山, 等. 不同燕麦品种抗氧化系统对秆锈病菌侵染的响应[J]. 北方农业学报, 2021, 49(4):98-104.  doi: 10.12190/j.issn.2096-1197.2021.04.14
 | 
																													
																						| [11] | 姜淑祯, 宋文静, 杨波, 等. 不同烤烟品种对青枯病胁迫的生理响应及抗性分析[J]. 中国烟草科学, 2022, 43(6):25-30. | 
																													
																						| [12] | QI P P, HUANG M L, HU X H, et al. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling[J]. The plant cell, 2022,34:1666-1683. | 
																													
																						| [13] | TIBOR J, GABRIELLA S, MAGDA P. Salicylic acid signaling in plants[J]. International journal of molecular sciences, 2020, 21(7):2655.  doi: 10.3390/ijms21072655    
																																					URL
 | 
																													
																						| [14] | DING P T, DING Y L. Stories of salicylic acid: A plant defense hormone[J]. Trends in plant science, 2020,25:549-565. | 
																													
																						| [15] | PIETERSE C M J, LEON-REYES A, VAN DER ENT S, et al. Networking by small-molecule hormones in plant immunity[J]. Nature chemical biology, 2009,5:308-316. | 
																													
																						| [16] | HILLMER R A, KENICHI T, GHANASYAM R, et al. The highly buffered Arabidopsis immune signaling network conceals the functions of its components[J]. PLoS genetics, 2017, 13(5):e1006639.  doi: 10.1371/journal.pgen.1006639    
																																					URL
 | 
																													
																						| [17] | SATO M, TSUDA K, WANG L, et al. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling[J]. PLoS pathogens, 2010, 6(7):e1001011.  doi: 10.1371/journal.ppat.1001011    
																																					URL
 | 
																													
																						| [18] | LI B C, BASS W T, CORNELIUS P L. Resistance to tobacco black shank in Nicotiana species[J]. Crop science, 2006,46:554-560. | 
																													
																						| [19] | SAHU P K, JAYALAKSHMI K, TILGAM J, et al. ROS generated from biotic stress: Effects on plants and alleviation by endophytic microbes[J]. Frontiers in plant science, 2022,24:1042936. | 
																													
																						| [20] | KUNIAK E, KOPCZEWSKI T. The chloroplast reactive oxygen species-redox system in plant immunity and disease[J]. Frontiers in plant science, 2020,11:572686. | 
																													
																						| [21] | DAYMI C, ANGEL G C, ALEXANDER M. Reactive oxygen species, essential molecules, during plant-pathogen interactions[J]. Plant physiology and biochemistry, 2016,103:10-23. | 
																													
																						| [22] | LIANG M L, DONG L H, DENG Y Z. Circadian redox rhythm in plant-fungal pathogen interactions[J]. Antioxidants & redox signalling, 2022, 37(10/12):726-738. | 
																													
																						| [23] | APEL K, HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual review of plant biology, 2004,55:373-399. | 
																													
																						| [24] | ZHANG N, LV F, QIU F H, et al. Pathogenic fungi neutralize plant-derived ROS via Srpk1 deacetylation[J]. The EMBO journal, 2023, 42(9):e112634.  doi: 10.15252/embj.2022112634    
																																					URL
 | 
																													
																						| [25] | 郭明欣, 刘佳佳, 侯琳琳, 等. 植物体内活性氧的产生及清除机制研究进展[J]. 科技视界, 2021(8):104-106. | 
																													
																						| [26] | NADARAJAH K K. ROS homeostasis in abiotic stress tolerance in plants[J]. International journal of molecular sciences, 2020, 21(15): 5208. |