[1] |
赵亚南, 黄大野, 杨丹, 等. 烟草黑胫病研究进展[J]. 湖北农业科学, 2022, 61(S1):25-28,66.
|
[2] |
陈瑞泰, 朱贤朝, 王智发, 等. 全国16个主产烟省(区)烟草侵染性病害调研报告[J]. 中国烟草科学, 1997(4):3-9.
|
[3] |
范志朋. 遵义市烟草黑胫病发病规律与化学防治研究[D]. 合肥: 安徽农业大学, 2020.
|
[4] |
高文华, 李江美. 烟草黑胫病防治研究进展[J]. 热带农业科技, 2020, 43(1):50-54.
|
[5] |
李永平, 肖炳光, 焦芳婵, 等. 烤烟新品种云烟97的选育及其特征特性[J]. 中国烟草科学, 2012, 33(4):28-31.
|
[6] |
李永平, 王颖宽, 马文广, 等. 烤烟新品种云烟87的选育及特征特性[J]. 中国烟草科学, 2001(4):38-42.
|
[7] |
张永春, 黄镇, 关国经, 等. 不同农业生态调控措施对烟草青枯病的影响[J]. 中国烟草科学, 2007(4):49-52.
|
[8] |
赵显阳, 盘柳依, 陈明, 等. 茉莉酸甲酯对辣椒抗青枯病的诱导效应及抗氧化酶活性的影响[J]. 植物保护学报, 2018, 45(5):1103-1111.
|
[9] |
GAO Y F, LIU J K, YANG F M, et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiologia plantarum, 2020,168:98-117.
|
[10] |
韩宇婷, 陈晓晶, 徐忠山, 等. 不同燕麦品种抗氧化系统对秆锈病菌侵染的响应[J]. 北方农业学报, 2021, 49(4):98-104.
doi: 10.12190/j.issn.2096-1197.2021.04.14
|
[11] |
姜淑祯, 宋文静, 杨波, 等. 不同烤烟品种对青枯病胁迫的生理响应及抗性分析[J]. 中国烟草科学, 2022, 43(6):25-30.
|
[12] |
QI P P, HUANG M L, HU X H, et al. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling[J]. The plant cell, 2022,34:1666-1683.
|
[13] |
TIBOR J, GABRIELLA S, MAGDA P. Salicylic acid signaling in plants[J]. International journal of molecular sciences, 2020, 21(7):2655.
doi: 10.3390/ijms21072655
URL
|
[14] |
DING P T, DING Y L. Stories of salicylic acid: A plant defense hormone[J]. Trends in plant science, 2020,25:549-565.
|
[15] |
PIETERSE C M J, LEON-REYES A, VAN DER ENT S, et al. Networking by small-molecule hormones in plant immunity[J]. Nature chemical biology, 2009,5:308-316.
|
[16] |
HILLMER R A, KENICHI T, GHANASYAM R, et al. The highly buffered Arabidopsis immune signaling network conceals the functions of its components[J]. PLoS genetics, 2017, 13(5):e1006639.
doi: 10.1371/journal.pgen.1006639
URL
|
[17] |
SATO M, TSUDA K, WANG L, et al. Network modeling reveals prevalent negative regulatory relationships between signaling sectors in Arabidopsis immune signaling[J]. PLoS pathogens, 2010, 6(7):e1001011.
doi: 10.1371/journal.ppat.1001011
URL
|
[18] |
LI B C, BASS W T, CORNELIUS P L. Resistance to tobacco black shank in Nicotiana species[J]. Crop science, 2006,46:554-560.
|
[19] |
SAHU P K, JAYALAKSHMI K, TILGAM J, et al. ROS generated from biotic stress: Effects on plants and alleviation by endophytic microbes[J]. Frontiers in plant science, 2022,24:1042936.
|
[20] |
KUNIAK E, KOPCZEWSKI T. The chloroplast reactive oxygen species-redox system in plant immunity and disease[J]. Frontiers in plant science, 2020,11:572686.
|
[21] |
DAYMI C, ANGEL G C, ALEXANDER M. Reactive oxygen species, essential molecules, during plant-pathogen interactions[J]. Plant physiology and biochemistry, 2016,103:10-23.
|
[22] |
LIANG M L, DONG L H, DENG Y Z. Circadian redox rhythm in plant-fungal pathogen interactions[J]. Antioxidants & redox signalling, 2022, 37(10/12):726-738.
|
[23] |
APEL K, HIRT H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual review of plant biology, 2004,55:373-399.
|
[24] |
ZHANG N, LV F, QIU F H, et al. Pathogenic fungi neutralize plant-derived ROS via Srpk1 deacetylation[J]. The EMBO journal, 2023, 42(9):e112634.
doi: 10.15252/embj.2022112634
URL
|
[25] |
郭明欣, 刘佳佳, 侯琳琳, 等. 植物体内活性氧的产生及清除机制研究进展[J]. 科技视界, 2021(8):104-106.
|
[26] |
NADARAJAH K K. ROS homeostasis in abiotic stress tolerance in plants[J]. International journal of molecular sciences, 2020, 21(15): 5208.
|