[1] |
阳启耀, 张友泓, 朱芝燕, 等. 基于SWOT分析法的广西柑橘产业发展研究[J]. 农村经济与科技, 2022, 33(18):86-88.
|
[2] |
黄元腾吉, 朱文倩, 王正贤, 等. 广西南宁市柑橘木虱虫生真菌种类调查[J]. 环境昆虫学报, 2022, 44(5):1176-1188.
|
[3] |
白津铭. 南宁市柑橘木虱天敌种类及优势天敌捕食和寄生特性研究[D]. 南宁: 广西大学, 2022.
|
[4] |
MAHLEIN A K. Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping[J]. Plant disease, 2016, 100(2):241-251.
doi: 10.1094/PDIS-03-15-0340-FE
URL
|
[5] |
吕石磊, 卢思华, 李震, 等. 基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法[J]. 农业工程学报, 2019, 35(17):205-214.
|
[6] |
WANG F, WANG R, XIE C, et al. Fusing multi-scale context-aware information representation for automatic in-field pest detection and recognition[J]. Computers and electronics in agriculture, 2020, 169:105222.
|
[7] |
王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3):156-163.
|
[8] |
王璨, 武新慧, 李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报, 2018, 34(5):144-151.
|
[9] |
CHENG X, ZHANG Y, CHEN Y, et al. Pest identification via deep residual learning in complex background[J]. Computers and electronics in agriculture, 2017, 141:351-356.
doi: 10.1016/j.compag.2017.08.005
URL
|
[10] |
FUENTES A F, YOON S, LEE J, et al. High-performance deep neural network-based tomato plant diseases and pests diagnosis system with refinement filter bank[J]. Frontiers in plant science, 2018, 9:1162.
doi: 10.3389/fpls.2018.01162
pmid: 30210509
|
[11] |
郝菁, 贾宗维. 基于图像识别的苹果叶片病害识别模型对比研究[J]. 中国农学通报, 2022, 38(12):153-158.
doi: 10.11924/j.issn.1000-6850.casb2021-1179
|
[12] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on pattern analysis & machine intelligence, 2017, 39(6):1137-1149.
|
[13] |
杨志峰, 沈永明, 张远, 等. 基于FastR-CNN算法的生态生物识别方法[P]. 中国专利,CN114549824A, 2022-05-27.
|
[14] |
黄华毅, 马晓航, 扈丽丽, 等. FastR-CNN深度学习和无人机遥感相结合在松材线虫病监测中的初步应用研究[J]. 环境昆虫学报, 2021, 43(5):1295-1303.
|
[15] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
URL
|
[16] |
QASSIM H, VERMA A, FEINZIMER D. Compressed residual-VGG16 CNN model for big data places image recognition[A].//2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC)[C]. IEEE, 2018:169-175.
|
[17] |
朱威, 屈景怡, 吴仁彪. 结合批归一化的直通卷积神经网络图像分类算法[J]. 计算机辅助设计与图形学学报, 2017, 29(9):1650-1657.
|
[18] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[A].//Proceedings of the IEEE conference on computer vision and pattern recognition[C]. 2017:2117-2125.
|
[19] |
RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International journal of computer vision, 2015, 115(3):211-252.
doi: 10.1007/s11263-015-0816-y
URL
|
[20] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[A]. //Proceedings of the IEEE conference on computer vision and pattern recognition[C]. 2016:779-788.
|
[21] |
HENDERSON P, FERRARI V. End-to-end training of object class detectors for mean average precision[A].//Asian conference on computer vision[C]. Springer, Cham, 2016:198-213.
|