[1] Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production[J]. Agronomy Journal,1999,91(3):357-363.
[2] Vlek P, Byrnes B. The efficacy and loss of fertilizer N in lowland rice[J]. Fertilizer Research,1986,9(1-2):131-147.
[3] London J G. Nitrogen study fertilizes fears of pollution[J]. Nature, 2005,433(7028):791.
[4] Beman J M, Arrigo K, Matson P M. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean[J]. Nature, 2005,434(7030):211-214.
[5] Tilman D. Global environmental impacts of agriculture expansion: the need for sustainable and efficient practices[J]. Proceedings of the National Academy of Sciences,USA,1999,96(11):5995-6000.
[6] Ramos C. Effect of agricultural practices on the nitrogen losses to the environment[J]. Fertiliser Research,1996(43):183-189.
[7] Stulen I, Perez- Soba M, De Kok L J, et al. Impact of gaseous nitrogen deposition on plant functioning[J]. New Phytologist,1998, 139(1):61-70.
[8] Foulkes M, Hawkesford M, Barraclough P B, et al. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects[J]. Field Crops Research,2009,114(3):329-342.
[9] Dinnes D L, Karlen D L, Jaynes D B, et al. Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils [J]. Agronomy Journal,2002,94(1):153-171.
[10] Raun W R, Solie J B, Johnson G V, et al. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application[J]. Agronomy Journal,2002,94(4):815-820.
[11] Foulkes M, Hawkesford M, Barraclough P B, et al. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects [J]. Field Crops Research,2009,114(3):329-342.
[12] Sylvester- Bradley R, Stokes D, Scott R, et al. A physiological analysis of the diminishing responses of winter wheat to applied nitrogen. 2. Evidence[J]. Aspects of Applied Biology,1990(25):289- 300.
[13] Hurley T M, Malzer G L, Kilian B, et al. Estimating Site-Specific Nitrogen Crop Response Functions[J]. Agronomy Journal,2004,96 (5):1331-1343.
[14] Koch B, Khosla R, Frasier W M, et al. Economic feasibility of variable- rate nitrogen application utilizing site- specific management zones[J]. Agronomy Journal,2004,96(6):1572-1580.
[15] Powlson D. Understanding the soil nitrogen cycle[J]. Soil Use and Management,2007,9(3):86-93.
[16] Cassman K G, Dobermann A, Walters D T. Agroecosystems, nitrogen- use efficiency, and nitrogen management[J]. AMBIO: A Journal of the Human Environment,2002,31(2):132-140.
[17] 姜丽娜,邵云,金毓翠,等.氮肥施用时期与比例对超高产冬小麦干物质积累及产量的影响[J].麦类作物学报,2002,22(2):70-73.
[18] 岳寿松,于振文,余松烈,等.不同生育期施氮对冬小麦旗叶衰老和粒重的影响[J].中国农业科学,1997,30(02):42-46.
[19] Li Z, Li B, Tong Y, The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China[J]. J. Genet. Genomics,2008(35):451-456.
[20] Ortiz-Monasterio R, Sayre K, Rajaram S, et al. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates[J]. Crop Science,1997,37(3):898-904.
[21] Barraclough P B, Howarth J R, Jones J, et al. Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement[J]. European Journal of Agronomy,2010,33(1):1-11.
[22] Le Gouis J, Béghin D, Heumez E, et al. Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat [J]. European Journal of Agronomy,2000,12(3):163-173.
[23] Dhugga K S, Waines J. Analysis of nitrogen accumulation and use in bread and durum wheat[J]. Crop Science,1989,29(5):1232-1239.
[24] Muurinen S, Slafer G A, Peltonen- Sainio P. Breeding effects on nitrogen use efficiency of spring cereals under northern conditions [J]. Crop Science,2006,46(2):561-568.
[25] Foulkes M, Sylvester- Bradley R, Scott R K. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization of applied fertilizer nitrogen[J]. The Journal of Agricultural Science,1998,130(1):29-44.
[26] Brancourt- Hulmel M, Doussinault G, Lecomte C, et al. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992[J]. Crop Science,2003,43(1):37-45.
[27] Paccaud F, Fossati A, Cao H. Breeding for yield and quality in winter wheat: Consequences for nitrogen uptake and partitioning efficiency[J]. Zeitschrift Fur Pflanzenzuchtung,1985,94(2):89-100.
[28] Feil B. Breeding progress in small grain cereals—A comparison of old and modern cultivars[J]. Plant breeding,1992,108(1):1-11.
[29] Calderini D F, Torres-León S, Slafer G A. Consequences of wheat breeding on nitrogen and phosphorus yield, grain nitrogen and phosphorus concentration and associated traits[J]. Annals of Botany, 1995,76(3):315-322.
[30] Kibite S, Evans L. Causes of negative correlations between grain yield and grain protein concentration in common wheat[J]. Euphytica,1984,33(3):801-810.
[31] Triboi E, Martre P, Girousse C, et al. Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat[J]. European Journal of Agronomy,2006,25 (2):108-118.
[32] 李艳,董中东,郝西,等.小麦不同品种的氮素利用效率差异研究[J]. 中国农业科学,2007,40(3):472-477.
[33] 李艳,董中东,崔党群,等.133份小麦亲本材料氮磷利用效率的聚类分析[J].中国农学通报,2005,21(1):76-78,87.
[34] 杜建军,王新爱,闵东红.西北地区不同小麦品种氮营养效率差异及其机理研究[J].西北农林科技大学学报:自然科学版,2005,33(1): 34-38.
[35] 何文寿,陈素生,康建宏.宁夏春小麦氮素利用效率的基因型差异研究[J].土壤,2003,35(6):500-505.
[36] Habash D Z, Bernard S, Schondelmaier J, et al. The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield[J]. Theoretical and Applied Genetics,2007,114(3):403-419.
[37] Tsay Y F, Chiu C C, Tsai C B, et al. Nitrate transporters and peptide transporters[J]. FEBS Letters,2007(581):2290-2300.
[38] Masclaux- Daubresse C, Daniel- Vedele F, Dechorgnat J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[J]. Annals of Botany,2010,105(7):1141-1157.
[39] Buchner P, Hawkesford J M. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat[J]. Journal of Experimental Botany,2014,doi:10.1093/jxb/eru231.
[40] Kotur Z, Mackenzie N, Ramesh S, et al. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2. 1[J]. New Phytologist,2012,194(3):724- 731.
[41] Dechorgnat J, Patrit O, Krapp A, et al. Characterization of the Nrt2. 6 gene in Arabidopsis thaliana: a link with plant response to biotic and abiotic stress[J]. PloS one,2012,7(8):e42491.
[42] Kechid M, Desbrosses G, Rokhsi W, et al. The NRT2. 5 and NRT2. 6 genes are involved in growth promotion of Arabidopsis by the plant growth- promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM196[J]. New Phytologist, 2013,198(2):514-524.
[43] Gazzarrini S, Lejay L, Gojon A, et al. Three functional transporters for constitutive, diurnally regulated,and starvation induced uptake of ammonium into Arabidopsis roots[J]. The Plant Cell,1999(11): 937-947.
[44] Lea P, Miflin B. Alternative route for nitrogen assimilation in higher plants[J]. Nature,1974(251):614-616.
[45] Malagoli P, Laine P, Rossato L, et al. Dynamics of nitrogen uptake and mobilization in field- grown winter oilseed rape (Brassicanapus) from stem extension to harvest[J]. Annals of Botany,2005(95):853-861.
[46] Diaz C, Lema??tre T, Christ C, et al. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition[J]. Plant Physiology,2008(147):1437-1449.
[47] Lema?tre T, Gaufichon L, Boutet- Mercey S, et al. Enzymatic and metabolic diagnostic of nitrogen deficiency in Arabidopsis thaliana Wassileskija accession[J]. Plant and Cell Physiology,2008(49):1056- 1065.
[48] Uauy C, Distelfeld A, Fahima T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat [J]. Science,2006,314(5803):1298-1301.
[49] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems [J]. Proceedings of the National Academy of Sciences,2009,106(9): 3041-3046.
[50] Luo P G, Deng K J, Hu X Y, et al. Chloroplast ultrastructure regeneration with protection of photosystem II is responsible for the functional‘stay green’ trait in wheat[J]. Plant, Cell & Environment, 2013,36(3):683-696.
[51] Pang J, Palta J A, Rebetzke G J, et al. Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth[J]. Functional Plant Biology,2013, http://dx.doi.org/10.1071/FP13143.
[52] Yanagisawa S, Akiyama A, Kisaka H, et al. Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low- nitrogen conditions[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(20):7833-7838.
[53] Shrawat A K, Carroll R T, DePauw M, et al. Genetic engineering of improved nitrogen use efficiency in rice by the tissue specific expression of alanine aminotransferase[J]. Plant biotechnology journal,2008,6(7):722-732. |