[1] 尹端玲. 我国旱地土壤的解磷微生物土壤与环境. 2003, 20(5):243-246. [2] 沈善敏,陈欣. 中国土壤磷素肥力与农业中的磷管理中国土壤肥力[M]. 中国农业出版社,北京. 1998:212-269. [3] Al-Niemi T S, Summers M L, Elkins JG, et a1. Regulation of the Phosphate Stress Response in Rhizobium meliloti byPhoB[J]. Applied andSEnvironmentalSMicrobiology, 1997, 63:4978-4981. [4] Louw H A, Webley D M. A study of soil bacteria dissoliving certain inorganic-phosphate fertilizers and related compounds[J]. Journalof Applied Bacteriology, 1959, 174(18):5814-5819. [5] Rodriguez H, Gonzalez T, Goire I, et a1. Gluconic acid production and phosphate solubilizationby the plant growth-promoting bacterium Azospirillum spp[J]. Natunvissenschaften, 2004, 91(11):552-555. [6] Zhenli He, Jun Zhu. Microbial utilization and transformation of phosphate adsorbed by variable charge minerals[J]. Soil Biology and Biochemistry, 1998, 30 (7):917-923. [7] Jin Du, Jian Zhou, Jia Xue, et al. Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgare-Bacillus megaterium comsortium[J]. Metabolomics, 2012, 8:960-973. [8] Samuel Bertrand, Nadine Bohni, Sylvain Scchnee, et al. Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery[J]. Biotechnology Advances, 2014, 32:1180-1204. [9] Goldstein A H, Liu ST. Molecular cloning and regulation of a inorganic-phosphate- solubilizing gene from Erwinia herbicola[J]. Bio/Technology , 1987, (5):72-74 [10] Watanabe, F.S., Olsen, S.R.. Test of an ascorbic acid method for determining phosphorous in water and NaHCO3 extracts from soil[J]. Soil Science and Plant Nutrition, 1965, 29:677-678. [11] B.R. Glick, D.M. Penrose, J. Li. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria[J]. Journal of Theoretical Biology, 1998, 190:27-34. [12] S. Mantelin, B. Touraine. Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake[J]. Journal of Experimental Botany. 2004, 55(394): 27-34. [13] Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World J Microbiol Biotechnol, 2012, 28(4):1327-1350. [14] Azziz G, Bajsa N, Haghjou T, et al. Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop-pasture rotations in a no-tillage regime in Uruguay[J]. Applied Soil Ecology, 2012, 61:320-326. [15] Fernandez L, Agaras B, Zalba P, et al..Pseudomonas spp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under no-till management[J]. Biology and Fertility of Soils, 2012, 48(7):763-773. [16] Goldstein, A.H..Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram negative bacteria[J].Biological Agriculture and Horticulture,1995, 12:185-193. [17] Kim, K.Y., Jordan, D., Krishnan, H.B..Rahnella aqualitis, a bacterim isolated from soybean rhizosphere, can solubilize hydroxyapatite[J]. FEMS Microbiology Letters.1997, 153:273-277. [18] Ke Zhao, Xiaoping Zhang, Qiang Chen. Maize rhizosphere in Sichuan, China , hosts plant growth promoting Burkholderiacepaciawith phosphate solubilizing and antifungal abilities[J]. Microbiological Research, 2014, 169:76-82. [19] Kpomblekou, K., Tabatabai, M.A..Effect of organic acids on release of phosphorus from phosphate rocks[J]. Soil Science, 1994, 158:442-453.
|