Chinese Agricultural Science Bulletin ›› 2015, Vol. 31 ›› Issue (25): 164-170.doi: 10.11924/j.issn.1000-6850.casb15050052
Special Issue: 植物保护
Previous Articles Next Articles
Received:
2015-05-12
Revised:
2015-07-22
Accepted:
2015-06-19
Online:
2015-09-23
Published:
2015-09-23
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb15050052
[1] Oshima K, Kakizawa S, Nishigawa H, et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma [J]. Nature Genetics, 2004,36,27-29. [2] Du Toit A. Phytoplasma converts plants into zombies [J]. Nat Rev Microbiol, 2014,12:393. [3] Bertaccini A, Duduk B, Paltrinieri S, et al. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture [J]. American Journal of Plant Pathology, 2014,5, 1763-1788. [4] 金开璇. 泡桐丛枝病对泡桐立木生长影响的研究[J]. 林业实用技术, 1980,5:25-26. [5] Gasparich GE. Spiroplasmas and phytoplasmas: microbes associated with plant hosts [J]. Biologicals, 2010. 38(2):193-203. [6] Brown SE, Been BO, McLaughlin WA. Detection and variability of the lethal yellowing group (16Sr IV) phytoplasmas in the Cedusa sp. (Hemiptera: Auchenorrhyncha: Derbidae) in Jamaica [J]. Ann Appl Biol, 2006,149:53-62. [7] Magarey PA. Grapevine yellows-aetiology, epidemiology and diagnosis [J]. South African Journal of Enology, 1986,7:90-100. [8] Abou-Jawdah Y, Abdel Sater A, Jawhari M, et al. Asymmetrasca decedens (Cicadellidae, Typhlocybinae), a natural vector of ‘Candidatus Phytoplasma phoenicium’ [J]. Annals of Applied Biology, 2014,165(3):395-403. [9] Malagnini V, Pedrazzoli F, Papetti C, et al. Ecological and genetic differences between Cacopsylla melanoneura (Hemiptera,Psyllidae) populations reveal species host plant preference [J]. PLoS ONE, 2013,8(7): e69663. [10] Straus E. Phytoplasma research begins to bloom [J]. Science, 2009,325:388-390. [11] Weintraub PG, Beanland L. Insect vectors of phytoplasmas [J]. Annual Review of Entomology, 2006, 51:91-111. [12] Jeger MJ, Van Den BF, Madden LV, et al. A model for analysing lant-virus transmission characteristics andepidemic development [J]. IMA Journal of Mathematics Applied in Medicine and Biology, 1998,15(1):1-18. [13] Almeida RPP, Blua MJ, Lopes JRS, et al. Vector transmission of Xylella fastidiosa: applying fundamental knowledge to generate disease management strategies [J]. Annals of the Entomological Society of America, 2005,98(6): 775-786. [14] Gray S, Gildow FE. Luteovirus-aphid interactions [J]. Annual Review of Phytopathology, 2003,41:539-566. [15] Vallet-Gely I, Lemaitre B, Boccard F. Bacterial strategies to overcome insect defences [J]. Nature Reviews Microbiology, 2008,6:302-313. [16] Daugherty MP, Almeida RPP. Estimating Xylella fastidiosa transmission parameters: decoupling sharpshooter number and feeding period [J]. Entomologia Experimentalis et Applicata, 2009,132(1):84-92. [17] Hogenhout S, Oshima K, Ammar ED, et al. Phytoplasmas: bacteria that manipulate plants and insects [J]. Molecular Plant Pathology, 2008,9(4):403-423. [18] Purcell AH. Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected with mollicute plant pathogens [J]. Entomologia Experimentalis et Applicata, 1988,46(2):187-196. [19] Vage FE, Davis RE, Barbosa P, et al. Detection of a plant pathogen in a nonvector insect specises by the polymerase chain reaction [J]. Phytopathology, 1993,83(6):621-624. [20] Bressan A, Clair D, Sémétey O, et al. Insect injection and artificial feeding bioassays to test the vector specificity of Flavescence dorée phytoplasma [J]. Phytopathology, 2006,96(7):790-796. [21] Fletcher J, Wayadande A, Melcher U, et al. The phytopathogenic mollicute-insect vector interface: a closer look [J]. Phytopathology, 1998,88(12):1351-1358. [22] Suzuki S, Oshima K, Kakizawa S, et al. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity [J]. Proceedings of the National Academy of Sciences, 2006,103(11):4252-4257. [23] Galetto L, Bosco D, Balestrini R, et al. The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors [J]. PLoS ONE, 2011,6(7):e22571. [24] Galetto L, Nardi M, Saracco P, et al. Variation in vector competency depends on chrysanthemum yellows phytoplasma distribution within Euscelidius variegatus [J]. Entomologia Experimentalis et Applicata, 2009,131(2):200-207. [25] Bosco D, D’Amelio R. 2010. Transmission specificity and competitionn of multiple phytoplasmas in the insect vector [M].// Weintraub P, Jones P. Phytoplasmas: genomes, plant hosts, and vectors. Wallingford, UK: CABI Publishing, pp 293-308. [26] Rashidi M, Amelio RD, Galetto L, et al. Interactive transmission of two phytoplasmas by the vector insect [J]. Annals of Applied Biology, 2014,165(3):404-413. [27] Sastry SK, Zitter TA. 2014. “Ecology and epidemiology of virus and viroid diseases of tropical crops” in plant virus and viroid diseases in the tropics [M], Vol. 2 Epidemiology and Management (Dordrecht: Springer), pp1-148. [28] Hoshia A, Oshima K, Kakizawa S, et al. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(15): 6416-6421. [29] Sugawara K, Honma Y, Komatsu K, et al. The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU [J]. Plant Physiology, 2013,162(4):2005-2014. [30] Bai XD, Correa VR, Toru?o TY, et al. AY-WB phytoplasma secretes a protein that targets plant cell nuclei [J]. Molecular Plant-Microbe Interactions, 2009,22(1): 18-30. [31] Sugio A, MacLean AM, Kingdom HN, et al. Diverse targets of phytoplasma effectors: from plant development to defense against insects [J]. Annual Review of Phytopathology, 2011,49:175-195. [32] Sugio A, Kingdom HN, MacLean AM, et al. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(48): E1254-E1263. [33] MacLean AM, Sugio A, Makarova OV, et al. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants [J]. Plant Physiology, 2011,157(2):831-841. [34] MacLean AM, Orlovskis Z, Kowitwanich K, et al. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner [J]. PLoS Biology, 2014,12(4): e1001835. [35] Maejima K, Iwai R, Himeno M, et al. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody [J]. The Plant Journal, 2014,78(4), 541-554. [36] 赵锦,刘孟军,周俊义,等. 抗枣疯病种质资源的筛选与应用[J]. 植物遗传资源学报, 2006,7(4):398-403. [37] Singh PK, Akram M, Vajpeyi M, et al. Screening and development of resistant sesame varieties against phytoplasma [J]. Bulletin of Insectology, 2007,60(2): 303-304. [38] Seemüller E, Harries H. 2010. Plant resistance.// Weintraub P, Jones P. Phytoplasmas: genomes, plant hosts, and vectors [M]. Wallingford, UK: CABI Publishing, pp 147-169. [39] 刘孟军, 赵锦, 周俊义. 2010. 枣疯病 [M]. 北京:中国农业出版社. [40] Liu ZG, Wang Y, Xiao J, et al. Identification of genes associated with phytoplasma resistance through suppressive subtraction hybridization in Chinese jujube [J]. Physiological and Molecular Plant Pathology, 2014,86:43-48. [41] Bosco D, Minucci C, Boccardo G, et al. Differential acquisition of chrysanthemum yellows phytoplasma by three leafhopper species [J]. Entomologia Experimentalis et Applicata, 1997,83(2):219-224. [42] Galetto L, Demichelis CM, Bosco D. Host plant determines the phytoplasma transmission competence of Empoasca decipiens (Hemiptera: Cicadellidae) [J]. Journal of Economic Entomology, 2011,104(2): 360-366. [43] Bosco D, Leoncini P, Saracco P, et al. Interrelationships between ‘Candidatus Phytoplasma asteris’and its leafhopper vectors (Homoptera: Cicadellidae) [J]. Journal of Economic Entomology, 2007,100(5):1504-1511. [44] Hanboonsong Y, Ritthison W, Choosai C, et al. Transmission of sugarcane white leaf phytoplasma by Yamatotettix flavovittatus, a new leafhopper vector [J]. Journal of Economic Entomology, 2006,99(5):1531-1537. [45] Thein MM, Jamjanya T, Kobori Y, et al. Dispersal of the leafhoppers Matsumuratettix hiroglyphicus and Yamatotettix flavovittatus (Homoptera: Cicadellidae), vectors of sugarcane white leaf disease [J]. Applied Entomology and Zoology, 2012,47(3):255-262. [46] Daugherty M, Lopes J, Almeida R. Vector within-host feeding preference mediates transmission of a heterogeneously distributed pathogen [J]. Ecological Entomology, 2010, 35:360-366. [47] Lee IM, Gundersen-Rindal DE, Bertaccini A. Phytoplasma: ecology and genomic diversity [J]. Phytopathology, 1998,88:1359-1366. [48] Mann RS, Ali JG, Hermann SL, et al. Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen [J]. PLoS Pathogens, 2012,8(3): e1002610. [49] Mauck KE, Bosque-Pérez NA, Eigenbrode SD, et al. Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses [J]. Functional Ecology, 2012,26(5):1162-1175. [50] Sisterson M. Effects of insect-vector preference for healthy or infected plants on pathogen spread: insights from a model [J]. Journal of economic entomology, 2008,101(1):1-8. [51] Mayer CJ, Vilcinskas A, Gross J. Pathogen-induced release of plant allomone manipulates vector insect behavior [J]. Journal of Chemical Ecology, 2008,34(12):1518-1522. [52] Krüger K, Venter F, Schr?der ML. First insights into the influence of aster yellows phytoplasmas on the behaviour of the leafhopper Mgenia fuscovaria [J]. Phytopathogenic Mollicutes, 2015,5 (1-Supplement):S41-S42. [53] Mayer CJ, Vilcinskas A, Gross J. Phytopathogen lures its insect vector by altering host plant odor [J]. Journal of Chemical Ecology, 2008,34(6):1045-1049. [54] Biere A, Tack AJM. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods [J]. Functional Ecology, 2013,27(3):646-660. [55] Zhu F, Poelman EH, Dicke M. Insect herbivore-associated organisms affect plant responses to herbivory [J]. New Phytologist, 2014,204: 315-321. [56] 许志刚. 2009.普通植物病理学(第4版) [M]. 北京:高等教育出版社. [57] Lee RF, Nyland G, Lowe SK. Chemotherapy of cherry buckskin and peach yellow leafroll diseases: an evaluation of two tetracycline formulations and methods of application [J]. Plant Disease, 1987,71:119-121. [58] 许晓风. 土霉素对桑树黄化型萎缩病治疗机理的探讨[J]. 植物保护学报, 1989,16(2):87-92. [59] 侯保林,齐秋锁, 赵善香,等. 手术治疗枣疯病树的初步研究[J]. 河北农业大学学报, 1987,10(4):11-18. [60] Bressan A, Turata R, Maixner M, et al. Vector activity of Hyalesthes obsoletus living on nettles and transmitting a stolbur phytoplasma to grapevines: a case study [J]. Annals of Applied Biology, 2007,150(3):331-339. [61] Arocha Y, Zerfy T, Abebe G, et al. Identification of potential vectors and alternative plant hosts for the phytoplasma associated with napier grass stunt disease in Ethiopia [J]. J. Phytopathology, 2009,157(2):126-132. [62] Filippina L, Jovi? J, Cvrkovi? T, et al. 2009. Molecular characteristics of phytoplasmas associated with Flavescence dorée in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector [J]. Plant Pathology, 2009,58(5): 826-837. [63] Namba S. Phytoplasmas: a century of pioneering research [J]. Journal of General Plant Pahtology, 2011,77:345-349. [64] 花蕾. 枣疯病的研究现状[J]. 陕西林业科技, 1992,3:74-78. [65] Du T, Wang Y, Hu QX, et al. Transgenic Paulownia expressing shiva-1 gene has increased resistance to Paulownia witches’broom disease [J]. Journal of Integrative Plant Biology, 2005,47(12): 1500-1506. [66] Weintraub PG. Insect vectors of phytoplasmas and their control-an update [J]. Bulletin of Insectology, 2007,60 (2):169-173. [67] Jarausch B, Jarausch W. 2010. Psyllid vectors and their control.// Weintraub P, Jones P. Phytoplasmas: genomes, plant hosts, and vectors [M]. Wallingford, UK:CABI Publishing, pp 250-271. [68] 崔士英. 凹缘菱纹叶蝉的迁飞规律及防治研究[J]. 林业科学研究, 1991,4(2):197-200. [69] Kessler S, Schaerer S, Delabays N, et al. Host plant pReferences of Hyalesthes obsoletus, the vector of the grapevine yellows disease ‘bois noir’, in Switzerland [J]. Entomologia Experimentalis et Applicata, 2011,139(1): 60-67. [70] Mayer CJ, Vilcinskas A, Gross J. Chemically mediated multitrophic interactions in a plant-insect vector-phytoplasma system compared with a partially nonvector species [J]. Agricultural and Forest Entomology, 2011,13(1):25-35. [71] Lingua G, D’Agostino G, Massa N, et al. Mycorrhiza-induced differential response to a yellows disease in tomato [J]. Mycorrhiza, 2002,12(4):191-198. [72] Gamalero E, D’Amelio R, Musso C, et al. Effects of Pseudomonas putida S1Pf1Rif against chrysanthemum yellows phytoplasma infection [J]. Phytopathology, 2010,100(8):805-813.[73 D’Amelio R, Berta G, Gamalero E, et al. Increased plant tolerance against chrysanthemum yellows phytoplasma (‘Candidatus Phytoplasma asteris’) following double inoculation with Glomus mosseae BEG12 and Pseudomonas putida S1Pf1Rif [J]. Plant Pathology, 2011,60(6):1014-1022. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||