Chinese Agricultural Science Bulletin ›› 2016, Vol. 32 ›› Issue (6): 24-33.doi: 10.11924/j.issn.1000-6850.casb15080113
Special Issue: 油料作物
Previous Articles Next Articles
Yao Bingchen, Sun Yue, Sun Linjing, Su Jingping, Yan Shuangyong, Liu Xuejun
Received:
2015-08-21
Revised:
2016-01-25
Accepted:
2015-11-24
Online:
2016-03-07
Published:
2016-03-07
Yao Bingchen,Sun Yue,Sun Linjing,Su Jingping,Yan Shuangyong and Liu Xuejun. Research Advances and Application of Agrobacterium-mediated Transformation in Soybean[J]. Chinese Agricultural Science Bulletin, 2016, 32(6): 24-33.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb15080113
[1] 蔡一荣.农杆菌介导的高油酸大豆遗传转化方法的建立[D].长春:东北师范大学, 2006. [2] Pedersen H C, Christiansen J, Wyndaele R. Induction and in vitro culture of soybean crown gall tumors[J]. Plant Cell Report, 1983,2(4): 201-204. [3] Hinchee M A W, Conner-Ward D V, Newell C A, et al. Fraley and R.B.Horsch. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer [J]. Nature Biotechnology, 1988 6: 915-922. [4] Parrott W A, Dryde G, Vogt S, et al. Optimization of somatic embryogenesis and embryo germination in soybean [J]. In Vitro Cellular & Developmental Biology-Plant, 1988, 24(8): 817-820. [5] Owens L D, Cress D E. Genotypic variability of soybean response to Agrobacterium strains harboring Ti or Ri plasmids [J]. Plant Physiology, 1985, 77(1): 87-94. [6] McKenzie M A, Cress D E. The evaluation of South African cultivars of soybean for their susceptibility to Agrobacterium tumefaciens and the production of transgenic soybean [J]. South African Journal of Science, 1992, 88(4): 1993-196. [7] Bailey M A, Boerma H R, Parrott W A. Inheritance of tumor formation in response to Agrobacterium tumefaciens in soybean [J].Crop Science, 1994: 34(2):514-519. [8] Bodanese D A, Zanetti M H, Mundstock E, et al. Susceptibility of Brazilian soybean cultivars to Agrobacterium tumefaciens [J]. Brazilian Journal of Genetics, 1994, 17(1): 83-88. [9] Cheng T Y, Saka T, Voqui-Dinh T H. Plant regeneration from soybean cotyledonary node segments in culture [J]. Plant Science Letters, 1980,19(2):91-99. [10] Trick H N, Finer J J. Sonication-assisted Agrobacterium mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue [J]. Plant Cell Report, 1998, 17(6): 482-488. [11] Olhoft P M, Flagel L E, Donovan C M, et al. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method [J]. Planta, 2003, 216(5): 723-735. [12] Olhoft P M, Lin K, Galbraith J, et al. The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells [J]. Plant Cell Report, 2001, 20(8): 731-737. [13] Paz M M, Shou H, Guo Z, et al. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explants [J]. Euphytica, 2004, 136(2): 167-179. [14] Santarém E R, Trick H N, Essig J S, et al. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression [J].Plant Cell Report,1998, 17(10): 752-759. [15] Bodanese D A, Zanetti M H, Mundstock E, et al. Susceptibility of Brazilian soybean cultivars to Agrobacterium tumefaciens [J]. Brazilian Journal of Genetics, 1994, 17(1):83-88. [16] Danaldson P A, Simmonds D H. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean [J].Plant Cell Report, 2000, 19(5):478-484. [17] Meurer C A, Dinkins R D, Collins G B. Factors affecting soybean cotyledonary node transformation[J]. Plant Cell Report,1998, 18(3-4):180-186. [18] Zhang Z, Xing A, Staswick P, et al. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean[J]. Plant Cell Tissue Organ Culture, 1999 56(1):37-46. [19] Olhoft P M, Somers D A. L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells [J]. Plant Cell Report, 2001, 20(8): 706-711. [20] Liu H K, Yang C, Wei Z M. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system [J]. Planta, 2004, 219(6): 1042-1049. [21] Olhoft P M, Flagel L E, Somers D A. T-DNA locus structure in a large population of soybean plants transformed using the Agrobacterium-mediated cotyledonary-node method [J]. Plant Biotechnology Journal, 2004, 2(4): 289-300. [22] Paz M M, Martinez J C, Kalvig A B, et al. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation [J]. Plant Cell Report, 2006, 25(3): 206-213. [23] Yamada T, Watanabe S, Arai M. Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean[J]. Plant Biotechnology, 2010, 27(2):217-220. [24] 党尉,卫志明.根癌农杆菌介导的高效大豆遗传转化体系的建立[J].分子细胞生物学报, 2007,3:185-195. [25] 李小平,马媛媛,李鹏丽,等.利用RNA干扰技术敲rlpk2基因的表达可以延缓大豆叶片衰老[J].科学通报,2005,11(50):1090-1097. [26] 马丽萍,胡正,张保缺,等.一种快速、高效的大豆农杆菌转化技术[J].中国农业科学, 2008,41(3):661-668. [27] Hong H P, Zhang H Y, Olhoft P M, et al. Organogenic callus as the target for plant regeneration and transformation via Agrobacterium in soybean (Glycine max (L.) Merr.)[J]. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(6): 558-568. [28] Gao X R, Wang G K, Su Q, et al. Phytase expression in transgenic soybeans: Stable transformation with a vector-less construct [J]. Biotehnology Letters, 2007, 29:1757-178. [29] Wang G L, Xu Y N. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference[J]. Plant Cell Reports, 2008, 27(7): 1177-1184. [30] 马晓红,姚陆铭,武天龙.大豆整个子叶节外植体再生体系的建立及与子叶节、胚尖再生体系的比较[J].大豆科学,2008,27(3):373-390. [31] Liu J F, Su Q, An L J, et al. Transfer of a minimal linear marker-free and vector-flee smGFP cassette into soybean via ovary-drip transformation[J]. Biotehnology Letters, 2009, 31(2): 295-30. [32] 王翠艳,丁东风,于晓菊,等. Floral dip法在大豆遗传转化中的应用研究[J].南开大学学报:自然科学版, 2010,1:36-40. [33] 王罡,王萍,蔺宇,等.大豆基因型对根癌农杆菌菌株敏感性的研究[J].遗传, 2002,24(5):297-300. [34] Bush A L, Pueppke S G. Characterization of an unusual new Agrobacterium tumefaciens strain from Chrysanthemum moriflorium Ram[J]. Appl. Environm. Microbiol., 1991,57: 2468-2472. [35] Torisky R, Kovacs L, Avdiushko S, et al. Development of a binary vector system for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry5 [J]. Plant Cell Report, 1997, 17(2): 102-108. [36] Ko T S, Lee S, Farrand S K, et al. A partially disarmed vir helper plasmid, pKYRT1, in conjunction with 2,4-dichlorophenoxyactic acid promotes emergence of regenerable transgenic somatic embryos from immature cotyledons of soybean [J]. Planta, 2004, 218(4): 536-541. [37] Dang W, Wei Z. An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes [J]. Plant Science, 2007, 173(4): 381-389. [38] Donaldson P A, Simmonds D H. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean [J]. Plant Cell Report, 2000, 19(5): 478-484. [39] Zeng P, Vadnais D A, Zhang Z, et al. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] [J]. Plant Cell Report, 2004, 22(7): 478-482 [40] Xue R G, Xie H F, Zhang B. A multi-needle-assisted transformation of soybean cotyledonary node cells [J]. Biotechnology Letters, 2006, 28(19): 1551-1557. [41] Sato H, Yamada T, Kita Y, et al. Production of transgenic plants and their early seed set in Japanese soybean variety, Kariyutaka [J]. Plant Biotechnology, 2007, 24(5): 533-536. [42] Yamada T, Watanabe S, Arai M, et al. Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean [J]. Plant Biotechnology, 2010, 27(2): 217-220. [43] Liu S J, Wei Z M, Huang J Q. The effect of cocultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties [J]. Plant Cell Report,2008, 27(3): 489-498. [44] Parrott W A, Hoffman L M, Hildebrand D F, et al. Recovery of primary transformants of soybean [J]. Plant Cell Report,1989, 7(8): 615-617. [45] McCabe D E, Swain W F, Martinell B J, et al. Stable transformation of soybean (Glycine max) by particle acceleration [J]. Nature Biotechnology, 1988, 6: 923-926. [46] Arag?o F J L, Sarokin L, Vianna G R, et al. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency [J]. Theoretical and Applied Genetics, 2000, 101(1): 1-6. [47] Finer J J, McMullen M D. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue [J]. In Vitro Cellular & Developmental Biology-Plant, 1991, 27($): 175-182. [48] Sato S, Newell C, Kolacz K, et al. Stable transformation via particle bombardment in two different soybean regeneration systems [J]. Plant Cell Report, 1993, 12(7): 408-413. [49] Parrott W A, All J N, Adang M J, et al. Recovery and evaluation of soybean plants transgenic for a Bacillus thuringiensis var. Kurstaki insecticidal gene [J]. In Vitro Cellular & Developmental Biology-Plant, 1994, 30(3): 144-149. [50] Stewart C N J, Adang M J, All J N, et al. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene [J]. Plant Physiology, 1996, 112(1): 121-129. [51] Maughan P J, Philip R, Cho M J, et al. Biolistic transformation, expression, and inheritance of bovine β-casein in soybean (Glycine max) [J]. In Vitro Cellular & Developmental Biology-Plant, 1999, 35(4): 344-349. [52] Reddy M S S, Dinkins R D, Collins G B. Gene silencing in transgenic soybean plants transformed via particle bombardment[J]. Plant Cell Report, 2003, 21(7): 676-683. [53] El-Shemy H A, Teraishi M, Khalafalla M M, et al. Isolation of soybean plants with stable transgene expression by visual selection based on green fluorescent protein [J]. Molecular Breeding,2004, 14(3): 227-238. [54] Furutani N, Hidaka S. Efficient production of transgenic soybean using a co-transformation method[J]. Breeding Science, 2004, 54(2): 91-98. [55] Khalafalla M M, Rahman S M, El-Shemy H A, et al. Optimization of particle bombardment conditions by monitoring of transient sGFP (S65T) expression in transformed soybean [J]. Breeding Science, 2005, 55(3): 257-263. [56] Kita Y, Nishizawa K, Takahashi M, et al. Genetic improvement of the somatic embryogenesis and regeneration in soybean and transformation of the improved breeding lines [J]. Plant Cell Report, 2007, 26(4): 439-447. [57] FAO/WHO. Expert consultation on protein quality evaluation[R]. Food and Agriculture Organization of the United Nations, Rome. 1990. [58] Young V R. Soy protein in relation to human protein and amino acid nutrition [J]. Journal of the American Dietetic Association,1991,91(7): 828-835. [59] Dinkins R D, Reddy M S S, Meurer C A, et al. Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein [J]. In Vitro Cellular & Developmental Biology-Plant, 2001, 37(6): 742-747. [60] Kim W S, Krishnan H B. Expression of an 11kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells [J]. Plant Biotechnology Journal, 2004, 2(3): 199-210. [61] Li Z, Meyer S, Essig J S, et al. High-level expression of maize γ-zein protein in transgenic soybean (Glycine max) [J]. Molecular Breeding, 2005, 16(1): 11-20. [62] Kita Y, Nakamoto Y, Takahashi M, et al. Manipulation of amino acid composition in soybean seeds by the combination of deregulated tryptophan biosynthesis and storage protein deficiency[J]. Plant Cell Report, 2010, 29(1): 87-95. [63] Falco S C, Guida T, Locke M, et al. Transgenic canola and soybean seeds with in-creased lysine [J]. Nature Biotechnology, 1995, 13: 577-582. [64] Ishimoto M, Rahman S M, Hanafy M S, et al. Evaluation of amino acid content and nutritional quality of transgenic soybean seeds with high-level tryptophan accumulation [J]. Molecular Breeding, 2010, 25(2): 313-326. [65] Qi Q, Huang J, Crowley J, et al. Metabolically engineered soybean seed with enhanced threonine levels: biochemical characterization and seed-specific expression of lysine-insensitive variants of aspartate kinases from the enteric bacterium Xenorhabdus bovienii [J]. Plant Biotechnology Journal, 2011, 9(2): 193-204. [66] Cunha N B, Murad A M, Cipriano T M, et al. Waters et al. Expression of functional recombinant human growth hormone in transgenic soybean seeds [J]. Transgenic Research, 2011: 20(4): 811-826. [67] Ding S H, Huang L Y, Wang Y D, et al. High-level expression of basic fibroblast growth factor in transgenic soybean seeds and characterization of its biological activity [J]. Biotechnology Letters, 2006, 28(12): 869-875. [68] Piller K J, Clemente T E, Jun S M, et al. Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean [J]. Planta,2005, 222(1): 6-18. [69] Nishizawa K, Kita A, Doi C, et al. Accumulation of the bioactive peptides, novokinin, LPYPR and rubiscolin, in seeds of genetically modified soybean[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(12): 3301-3305. [70] Tougou M, Furutani N, Yamagishi N, et al. Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus [J]. Plant Cell Report,2006, 25(11): 1213-1218. [71] Takahashi M, Uematsu Y, Kashiwaba K, et al. Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency [J]. Planta,2003, 217(4): 577-586. [72] TadaY, Utsumi S, Takaiwa F. Foreign gene products can be enhanced by introduction into low storage protein mutants [J]. Plant Biotechnology Journal, 2003, 1(6): 411-422. [73] Ogawa T, Samoto M, Takahashi K. Soybean allergens and hypoallergenic soybean products [J]. Journal of Nutritional Science and Vitaminology,2000, 46(6): 271-279. [74] Herman E M, Helm R M, Jung R, et al. Genetic modification removes an immune odominant allergen from soybean [J]. Plant Physiology, 2003, 132(1): 36-43. [75] Lardizabal K, Effertz R, Levering C, et al. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean [J]. Plant Physiology,2008, 148(1): 89-96. [76] Rao S S, D Hildebrand. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene [J]. Lipids, 2009, 44: 945-951. [77] Yadav N S. Genetic modification of soybean oil quality. In: Verma D.P.S. and R.C. Shoemaker (eds.) Soybean: Genetics, Molecular Biology and Biotechnology [M]. CAB INTERNATIONAL, USA, 1996:165-188. [78] Kasai M, Kanazawa A. RNA silencing as a tool to uncover gene function and engineer novel traits in soybean [J]. Breeding Science, 2012, 61(5):468-479. [79] Buhr T, Sato S, Ebrahim F, et al. Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean [J]. The Plant Journal, 2002, 30(2): 155-163. [80] Flores T, Karpova O, Su X, et al. Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)] [J]. Transgenic Research, 2008, 17(5): 839-850. [81] Li R, Yu K, Hatanaka T, et al. Vernonia DGATs increase accumulation of epoxy fatty acids in oil [J]. Plant Biotechnology Journal,2010, 8(2): 184-195. [82] Chen R, Matsui K, Ogawa M, et al. Expression of Δ6, Δ5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds [J]. Plant Science, 2006, 170(2): 399-406. [83] Eckert H, Vallee B L, Schweiger B J, et al. Co-expression of the borage Δ6 desaturase and the Arabidopsis Δ15-desaturase results in high accumulation of steridonic acid in the seeds of transgenic soybean [J]. Planta, 2006, 224(5): 1050-1057. [84] Kajikawa M, Matsui K, Ochiai M, et al. Production of arachidonic and eicosapentaenoic acids in plants using bryophyte fatty acid Δ6-desaturase, Δ6-elongase, and Δ5-desaturase genes [J]. Bioscience, Biotechnology, and Biochemistry,2008, 72(2): 435-444. [85] Sato S, Xing A, Ye X, et al. Production of γ-linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean [J]. Crop Science, 2004, 44(2): 646-652. [86] Bramley P M, Elmadfa I, Kafatos A, et al. Vitamin E [J]. Journal of the Science of Food and Agriculture, 2000, 80(7): 913-938. [87] Herbers K. Vitamin production in transgenic plants [J]. Journal of Plant Physiology, 2003, 160(7): 821-829. [88] Hoppe P P, Krennrich G. Bioavailability and potency of natural-source and all-racemic α-tocopherol in the human: a dispute [J]. European Journal of Nutrition, 2000, 39(5): 183-193. [89] Kim Y J, Seo H Y, Park T I, et al. Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene [J]. Journal of Plant Biotechnology, 2005, 7(3): 203-209. [90] Tavva V S, Kim Y H, Kagan I A, et al. Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltrans-ferase gene [J]. Plant Cell Report, 2007, 26(1): 61-70. [91] VanEenennaam A L, Lincoln K, Durrett T P, et al. Engineering vitamin E content: from Arabidopsis mutant to soy oil [J]. Plant Cell,2003, 15(12): 3007-3019. [92] Ebel J. Phytoalexin synthesis: the biochemical analysis of the induction process [J]. Annual Review of Phytopathology,1986, 24: 235-264. [93] Rivera-Vargas L I, Schmitthenner A F, Graham T L. Soybean flavonoid effects on and metabolism by Phytophthora sojae [J]. Phytochemistry, 1993, 32(4): 851-857. [94] Subramanian S, Graham M Y, Yu O, et al. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae [J]. Plant Physiology, 2005, 137(4): 1345-1353. [95] VanRhijn P, Vanderleyden J. The Rhizobium-plant symbiosis [J]. Microbiology and Molecular Biology Reviews, 1995, 59(1): 124-142. [96] Setchell K D. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones [J]. The American Journal of Clinical Nutrition, 1998, 68(6): 1333-1346. [97] Graham T L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates [J]. Plant Physiology, 1991, 95(2): 594-603. [98] Yu O, Shi J, Hession A O, et al. Metabolic engineering to increase isoflavone biosynthesis in soybean seed [J]. Phytochemistry 2003, 63(7): 753-763. [99] Zernova O V, Lygin A V, Widholm J M, et al. Modification of isoflavones in soybean seeds via expression of multiple phenolic biosynthetic genes [J]. Plant Physiology and Biochemistry, 2009, 47(9): 769-777. [100] Kudou S, Tonomura M, Tsukamoto C, et al. Isolation and structural elucidation of the major genuine soybean saponin [J]. Bioscience, Biotechnology, and Biochemistry, 1992, 56(1): 142-143. [101] Shiraiwa M, K. Harada K, Okubo K. Composition and structure of “group B saponin” in soybean seed [J]. Agricultural Biology and Chemistry, 1991, 55(4):911-917. [102] Shiraiwa M, Kudo S, Shimoyamada M, et al. Composition and structure of “group A saponin” in soybean seed [J]. Agricultural Biology and Chemistry, 1991, 55(2): 315-322. [103] Topping D L, Storer G B, Calvert G D, et al. Effect of dietary saponins on fecal bile acids and neutral sterols, plasma lipids, and lipoprotein turnover in the pig [J]. The American Journal of Clinical Nutrition, 1980, 33(4): 783-786. [104] Ellington A A, Berhow M, Singletary K W. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins [J]. Carcinogenesis, 2005, 26(1): 159-167. [105] Ellington A A, Berhow M A, Singletary K W. Inhibition of Akt signaling and enhanced ERK1/2 activity and involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells [J]. Carcinogenesis, 2006, 27(2): 298-306. [106] Takagi K, Nishizawa K, Hirose A, et al. Manipulation of saponin biosynthesis by RNA interference-mediated silencing of β-amyrin synthase gene expression in soybean [J]. Plant Cell Report, 2011, 30(10): 1835-1846. [107] Chiera J M, Finer J J, Grabau E A. Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability [J]. Plant Molecular Biology, 2004, 56(6): 895-904. [108] Nunes A C S, Vianna G R, Cuneo F, et al. RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content [J]. Planta, 2006 224(1): 125-132. [109] Shi J, Wang H, Schellin K, et al. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds [J]. Nature Biotechnology, 2007, 25: 930-937. [110] Tabashnik B E. Evolution of resistance to Bacillus thuringiensis [J]. Annual Review of Entomology, 1994, 39: 47-79 [111] Owens L D, Cress D E. Genotypic variability of soybean response to Agrobacterium strains harboring the Ti or Ri plasmids [J]. Plant Physiology, 1985, 77(1): 87-94. [112] Dufourmantel N, Tissot G, Goutorbe F, et al. Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin [J]. Plant Molecular Biology, 2005, 58(5): 659-668. [113] Miklos J A, Alibhai M F, Bledig S A, et al. Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of resistance to lepidopteran pests [J]. Crop Science,2007, 47(1): 148-157. [114] Walker D R, All J, McPherson R M, et al. Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser corn-stalk borer (Lepidoptera: Pyralidae) [J]. Journal of Economic Entomology,2000, 93(3): 613-622. [115] Walker D, Boerma H R, All J, et al. Combining cry1Ac with QTL alleles from PI 229358 to improve soybean resistance to lepidopteran pests [J]. Molecular Breeding, 2002 9(1): 43-51. [116] McLean M D, Hoover G J, Bancroft B, et al. Identification of the full-length Hs1pro-1 coding sequence and preliminary evaluation of soybean cyst nematode resistance in soybean transformed with Hs1pro-1 cDNA [J]. Canadian Journal of Botany, 2007, 85(4): 437-441. [117] Ross J P. Effect of time and sequence of inoculation of soybeans with soybean mosaic and bean pod mottle viruses on yields and seed characters [J]. Phytopathology, 1969, 59: 1404-1408. [118] Furutani N, Hidaka S, Kosaka Y, et al. Coat protein gene-mediated resistance to soybean mosaic virus in transgenic soybean [J]. Breeding Science, 2006, 56(2): 119-124. [119] Wang X Y, Eggenberger A L, Forrest W, et al. Pathogen-derived transgenic resistance to soybean mosaic virus in soybean [J]. Molecular Breeding,2001, 8(2): 119-127. [120] Di R, Purcell V, Collins G B, et al. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene [J]. Plant Cell Report, 1996, 15(10): 746-750. [121] Reddy M S S, Ghabrial S A, Redmond C T, et al. Resistance to Bean pod mottle virus in transgenic soybean lines expressing the capsid polyprotein [J]. Phytopathology, 2001, 91(9): 831-838. [122] Tougou M, Furutani N, Yamagishi N, et al. Development of resistant transgenic soybeans with inverted repeat-coat protein genes of soybean dwarf virus [J]. Plant Cell Report, 2006, 25(11): 1213-1218. [123] Tougou M, Yamagishi N, Furutani N, et al. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene [J]. Plant Cell Report, 2007, 26(11): 1967-1975. [124] Godoy G, Steadman J R, Dickman M B, et al. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris [J]. Physiological and Molecular Plant Pathology, 1990, 37(3): 179-191. [125] Cunha W G, Tinoco M L P, Pancoti H L, et al. High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylate gene [J]. Plant Pathology, 2010, 59(4): 654-660. [126] Donaldson P A, Anderson T, Lane B G, et al. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum [J]. Physiological and Molecular Plant Pathology, 2001, 59(6): 297-307. [127] DeRonde J A, Laurie R N, Caetano T, et al. Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant [J]. Euphytica, 2004, 138(2): 123-132. [128] De Ronde J A, Cress W A, Krüger G H J, et al. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress [J]. Journal of Plant Physiology, 2004, 161(11): 1211-1224. [129] Valente M A S, Faria J A Q A, Soares-Ramos J R L, et al. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco [J]. The Journal of Experimental Botany, 2009, 60(2): 533-546. [130] Vasconcelos M, Eckert H, Arahama V, et al. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2 [J]. Planta,2006, 224(5): 1116-1128. [131] Padgette S R, Kolacz K H, Delannay X, et al. Development, identification, and characterization of a glyphosate-tolerant soybean line [J]. Crop Science, 1995, 35: 1451-1461. [132] Dufourmantel N, Dubald M, Matringe M, et al. Generation and characterization of soyben and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance [J]. Plant Biotechnology Journal, 2007, 35(5): 118-133. [133] Kita Y, Hanafy M S, Deguchi M, et al. Generation and characterization of herbicide-resistant soybean plants expressing novel phosphinothricin N-acetyltransferase genes [J]. Breeding Science, 2009, 59(3): 245-251 [134] Rech E L, Vianna G R, Arag?o F J. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants [J]. Nature Protocols, 2008, 3: 410-418. [135] Liu B, Watanabe S, Uchiyama T, et al. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1 [J]. Plant Physiology, 2010, 153(1): 198-210. [136] Chilton M D, Tepfer D A, Petit A, et al. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells [J]. Nature, 1982, 295: 432-434. [137] Kereszt A, Li D, Indrasumunar A, et al. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology [J]. Nature Protocols, 2007, 2: 948-952. [138] Indrasumunar A, Searle I, Lin M H, et al. Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max L. Merr) [J]. The Plant Journal, 2011, 65(1): 39-50. [139] Yang S M, Tang F, Gao M Q, et al. R gene-controlled host specificity in the legume-rhizobia symbiosis [J]. Proceedings of the National Academy of Sciences, 2010, 107(43): 18735-18740. [140] Kasai M, Kanazawa A. RNA silencing as a tool to uncover gene function and engineer novel traits in soybean [J]. Breeding Science, 2012, 61(5): 468-479. [141] Curtin S J, Zhang F, Sander J D, et al. Targeted mutagenesis of duplicated genes in soybean with zincfinger nucleases [J]. Plant Physiol., 2011, 156: 466-473. [142] Mathieu M, Winters E K, Kong F, et al. Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository [J]. Planta, 2009, 229: 279-289. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||