Chinese Agricultural Science Bulletin ›› 2017, Vol. 33 ›› Issue (26): 33-40.doi: 10.11924/j.issn.1000-6850.casb16100111
Special Issue: 生物技术
Previous Articles Next Articles
王卫民
Received:
2016-10-27
Revised:
2016-12-13
Accepted:
2016-12-23
Online:
2017-09-19
Published:
2017-09-19
王卫民. Advances in the Functional Study of Vertebrates RNase1[J]. Chinese Agricultural Science Bulletin, 2017, 33(26): 33-40.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb16100111
[1] Barnard E A. Biological function of pancreatic ribonuclease[J]. Nature,1969,221:340-344. [2] Beintema J J, Fitch W M, Carsana A. Molecular evolution of pancre-atic-type ribonucleases[J]. Mol Biol Evol,1986,3:262-275. [3] Beintema J J, Gaastra W, Lenstra J A, et al. The molecular evolution of pancreatic ribonuclease[J]. J Mol Evol,1977,10:49-71. [4] Beintema J J. The primary structure of langur (Presbytis entellus) pancreatic ribonuclease: adaptive features in digestive enzymes in mammals[J]. Mol Biol Evol,1990,7:470-477. [5] Zhang J, Zhang Y P, Rosenberg H F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey[J]. Nat Genet,2002,30(4):411–415. [6] Zhang J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys[J]. Nat Genet,2006,38:819-823. [7] Kleineidam R G, Pesole G, Breukelman H J, et al. Inclusion of cetaceans within the order Artiodactyla based on phylogenetic analysis of pancreatic ribonuclease genes[J]. J Mol Evol,1999,48(3):360–368. [8] Kondrashov F A. Gene duplication as a mechanism of genomic adaptation to a changing environment[J]. Proc Biol Sci,2012,279(1749):5048–5057. [9] Magadum S, Banerjee U, Murugan P, et al. Gene duplication as a major force in evolution[J]. J Genet,2013,92(1):155-161. [10] Makova K D, Li W H. Divergence in the spatial pattern of gene expression between human duplicate genes[J]. Genome Res,2003,13(7):1638-1645. [11] Ota T, Nei M. Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family[J]. Mol Biol Evol,1994,11(3):469-482. [12] Wheeler T T, Maqbool N J, Gupta S K. Mapping, phylogenetic andexpression analysis of the RNase (RNaseA) locusin cattle[J]. J Mol Evol,2012,74(5–6):237–248. [13] Zhang J. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions[J]. Mol Biol Evol,2003,20:1310-1317. [14] Li X, Yang S, Peng L X, et al. Origin and evolution of new genes[J]. Chinese Sci Bull,2004,49:1120-1125. [15] Nei M, Gu X, Sitnikova T. Evolution by the birth-and-death process in multigene families of the vertebrate immune system[J]. Proc Natl Acad Sci USA,1997,94:7799-7806. [16] Nei M, Rogozin L B, Piontkivska H. Purifying selection and birth-and-death evolution in the ubiquitin gene family[J]. Proc Natl Acad Sci USA,2000,97:10866-10871. [17] Shi P, Zhang J Z, Yang H, et al. Adaptive Diversification of bitter taste receptor genes in mammalian evolution[J]. Mol Biol Evol,2003,20:805-814. [18] Zhang J, Rosenberg H F, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes[J]. Proc Natl Acad Sci USA,1998,95:3708-3713. [19] Gojobori J, Innan H. Potential of fish opsin gene duplications to evolve new adaptive functions[J]. Trends Genet,2009,25:198-202. [20] Okoyama S, Yokoyama R. Adaptive evolution of photoreceptors and visual pigments in vertebrates[J]. Annu Rev Ecol Syst,1996,27:543-567. [21] Wu H H, Su B. Adaptive evolution of SCML1 in primates, a gene involved in male reproduction[J]. BMC Evol Biol,2008,8:192. [22] Shi P, Zhang J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land[J]. Genome Res,2007,17:166-174. [23] Shi P, Zhang J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes[J]. Mol Biol Evol,2006,23:292-300. [24] Robbins L S, Nadeau J H, Johnson K R, et al. Pigmentation pheno-types of variant extension locus alleles result from point mutations that alter MSH receptor function[J]. Cell,1993,72:827-834. [25] Rosenblum E B, Hoekstra H E, Nachman M W. Adaptive reptile color variation and the evolution of the Mc1r gene[J]. Evolution,2004,58:1794-1808. [26] Takeuchi S H, Suzuki S, Hirose Y, et al. Molecular cloning and sequence analysis of the chick melanocortin 1-receptor gene[J]. Biochim Biophys Acta,1996,1306:122-126. [27] Beintema J J, Neuteboom B. Origin of the duplicated ribonuclease gene in guinea-pig: Comparison of the amino acid sequences with those of two close relatives: capybara and cuis ribonuclease[J]. J Mol Evol,1983,19:145-152. [28] Breukelman H J, Jekel P A, Dubois J Y, et al. Secretory ribonucleases in the primitive ruminant chevrotain (Tragulus javanicus)[J]. Eur J Biochem,2001,268:3890-3897. [29] D’Alessio G, Floridi A, De Prisco R, et al. Bull semen ribonucleases 1 purification and physico-chemical properties of the major component[J]. Eur J Biochem,1972,26:153-161. [30] Dubois J Y, Jekel P A, Mulder P P, et al. Pancreatic-type ribonuclease1 gene duplications in rat species[J]. J Mol Evol,2002,55:522-533. [31] Dubois J Y, Ursing B M, Kolkman J A, et al. Molecular evolution of mammalian ribonucleases 1[J]. Mol Phyl Evol,2003,27:453-463. [32] Martin L, Koczera P, Simons N, et al. The Human Host Defense Ribonucleases 1, 3 and 7 Are Elevated in Patients with Sepsis after Major Surgery—A Pilot Study[J]. International Journal of Molecular Sciences,2016,17(3). [33] Suzuki H, Parente A, Farina B, et al. Complete amino-acid sequence of bovine seminal ribonuclease, a dimeric protein from seminal plasma[J]. Biol Chem Hoppe-Seyler,1987,368:1305-1312. [34] Cabrerafuentes H A, Niemann B, Grieshaber P, et al. RNase1 as a potential mediator of remote ischaemic preconditioning for cardioprotection[J]. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery,2015,48(5):732-7. [35] Cabrera-Fuentes H A, Ruiz-Meana M, Simsekyilmaz S, et al. RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor-α in cardiac ischaemia/reperfusion injury[J]. Thrombosis Haemostasis,2014,112(6):1110-9. [36] Schienman J E, Holt R A, Auerbach M R, et al. Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys[J]. Mol Biol Evol,2006,23(8):1465-1479. [37] Yu L, Zhang Y P. The unusual adaptive expansion of pancreatic ribonuclease gene in carnivora[J]. Mol Biol Evol,2006,23:2326-2335. [38] Beintema J J, Kleineidam R G. The ribonuclease A superfamily: general discussion[J]. Cell Mol Life Sci,1998,54(8):825-832. [39] Cho S, Beintema J J, Zhang J. The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories[J]. Genomics,2005,85(2):208-220. [40] Beintema J J, Breukelman H J, Carsana A, et al. Evolution of vertebrate ribonucleases: ribonuclease A superfamily. In: D’Alessio G, Riordan J F, eds. Ribonucleases Structures and Functions[J]. San Diego:Academic Press,1997,245-269. [41] D’Alession G, Riordan J F. RNASEs Structures and Functions[J]. New York:Academic Press,1996 [42] Golding G B, Dean A M. The structural basis of molecular adaptation[J]. Mol Biol Evol,1998,15:355-396. [43] D'Alessio, Giuseppe, James F. Riordan, eds. Ribonucleases: structures and functions[M]. Academic Press,1997. [44] Beintema J J, Scheffer A J, Van Dijk H, et al. Pancreatic ribonuclease distribution and comparisons in mammals[J]. Nat New Biol,1973,241:76-78. [45] Goodman M, Barnabas J, Matsuda G, et al. Molecular evolution in the descent of man[J]. Nature,1971,233(5322):604-613. [46] Phelan J J, Hirs C H. The primary structure of porcine pancreatic ribonuclease. 3. The disulfide bonds[J]. Journal of Biological Chemistry,1970,245(3):654-61. [47] Plummer T H. Glycoproteins of bovine pancreatic juice. Isolation of ribonucleases C and D[J]. Journal of Biological Chemistry,1968,243(22):5961-5966. [48] Plummer T H, Tarentino A, Maley F. The glycopeptide linkage of ribonuclease B[J]. Journal of Biological Chemistry,1968,243(19):5158-5164. [49] Taborsky G. Chromatography of ribonuclease on carboxymethyl cellulose columns[J]. Journal of Biological Chemistry,1959,234(10):2652-2656. [50] Tsuruo T, Sudo K, Terao T, et al. Research on the carbohydrate-peptide linkage of whale pancreatic ribonuclease W2[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure,1970,200(3):560-563. [51] Tsuruo T, Yamashita S, Terao T, et al. Research on the carbohydrate-peptide linkage of porcine pancreatic ribonuclease[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure,1970,200(3):544-559. [52] Yamasaki Y, Murakami K, Irie M, et al. Purification and properties of procine pancreatic ribonuclease[J]. Journal of Biochemistry,1968,63(63):25-32. [53] Carreras E, Boix E, Rosenberg H F, et al. Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein[J]. Biochemistry,2003,42(22):6636-6644. [54] Huang Y C, Lin Y M, Chang T W, et al. The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity[J]. Journal of Biological Chemistry,2007,282(7):4626-4633. [55] Zhang J. Evolution by gene duplication: an update[J]. Trends Ecology Evol,2003,18(6):292-298. [56] Nitto T, Dyer K D, Czapiga M, et al. Evolution and function of leukocyte RNase A ribonucleases of the avian species, Gallus gallus[J]. Journal of Biological Chemistry,2006,281(35):25622-25634. [57] Cho S, Zhang J. Zebrafish ribonucleases are bactericidal: implications for the origin of the vertebrate RNase A superfamily[J]. Molecular Biology Evolution,2007,24(5):1259-68. [58] Strydom D J. The angiogenins[J]. Cellular and Molecular Life Sciences CMLS,1998,54(8):811-824. [59] Nitto T, Lin C, Dyer K D, et al. Characterization of a ribonuclease gene and encoded protein from the reptile, Iguana iguana[J]. Gene,2005,352:36-44. [60] Pizzo E, Buonanno P, Di M A, et al. Ribonucleases and angiogenins from fish[J]. Journal of Biological Chemistry,2006,281(37):27454-60. [61] Pizzo E, Varcamonti M, Maro A D, et al. Ribonucleases with angiogenic and bactericidal activities from the Atlantic salmon[J]. Febs Journal,2008,275(6):1283–1295. [62] Katekaew S, Torikata T, Araki T. The complete amino acid sequence of green turtle (Chelonia mydas) egg white ribonuclease[J]. The protein journal,2006,25(5):316-327. [63] Kazakou K, Holloway D E, Prior S H, et al. Ribonuclease A Homologues of the Zebrafish: Polymorphism, Crystal Structures of Two Representatives and their Evolutionary Implications[J]. Journal of Molecular Biology,2008,380(1):206-222. [64] Leonidas D D, Shapiro R, Subbarao G V, et al. Crystallographic studies on the role of the C-terminal segment of human angiogenin in defining enzymatic potency[J]. Biochemistry,2002,41(8):2552-2562. [65] Moroianu J, Riordan J F. Nuclear translocation of angiogenic proteins in endothelial cells: an essential step in angiogenesis[J]. Biochemistry,1994,33(42):12535-12539. [66] Riordan J F. Structure and function of angiogenin[J]. Ribonucleases: Structures and Functions,1997:445-489. [67] Clegg M T, Cummings M P, Durbin M L. The evolution of plant nuclear genes[J]. Proc Natl Acad Sci USA,1997,94:7791-7798. [68] Force A, Lynch M, Pickett F, et al. Preservation of duplicate genes by complementary degenerative mutations[J]. Genetics,1999,151:1531-1545. [69] Ohno S. Evolution by Gene Duplication[M]. Heidelberg:Springer-Verlag,1970. [70] Sorrentino S, Naddeo M, Russo A, et al. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues[J]. Biochemistry,2003,42:10182-10190. [71] Kay R N B, Davies A G. Digestive physiology. In: Davies A G, Olates J F, eds. Colobine Monkeys: Their Ecology, Behaviour and Evolution[M]. Cambridge:Cambridge University Press,1994 [72] Schaller G B, Teng Q T, Johnson K G, et al. The feeding ecology of giant pandas and Asiatic black bears in the Tanjiahe Reserve, China. In: Gittleman J L, ed. Carnivore Behavior, Ecology and Evolution[M]. New York: Cornell University Press,1989,212-241. [73] Beintema J J, Lenstra J A. Evolution of mammalian pancreatic ribonucleases. In: Goodman M, ed[J]. Macromolecular Sequences in Systematic and Evolutionary Biology. New York: Plenum,1982,43-73. [74] Beintema J J, Schuller C, Irie M, et al. Molecular evolution of the ribonuclease superfamily[J]. Prog Biophys Mol Biol,1988,51:165-192. [75] Pizzo E, D'Alessio G. The success of the RNase scaffold in the advance of biosciences and in evolution[J]. Gene,2007,406(1-2):8-12. [76] Zendzian E N, Barnard E A. Distributions of pancreatic ribonuclease, chymotrypsin, and trypsin in vertebrates[J]. Archives of biochemistry and biophysics,1967,122(3):699-713. [77] Liu H, Wang W. Expression Patterns and Functional Novelty of Ribonuclease 1 in Herbivorous Megalobrama amblycephala[J]. International Journal of Molecular Sciences,2016,17(5). [78] Fett J W, Strydom D J, Lobb R R, et al. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells[J]. Biochemistry,1985,24(20):5480-5486. [79] Dickson K A, Haigis M C, Raines R T. Ribonuclease inhibitor: structure and function[J]. Progress in nucleic acid research and molecular biology,2005,80:349-374. [80] Lee F S, Vallee B L. Structure and action of mammalian ribonuclease (angiogenin) inhibitor[J]. Progress in nucleic acid research and molecular biology,1993,44:1-30. [81] Childs S, Chen J N, Garrity D M, et al. Patterning of angiogenesis in the zebrafish embryo[J]. Development,2002,129(4):973-982. [82] Monti D M, Yu W, Pizzo E, et al. Characterization of the angiogenic activity of zebrafish ribonucleases[J]. Febs Journal,2009,276(15):4077–4090. [83] Quarto N, Pizzo E, D'Alessio G. Temporal and spatial expression of RNases from zebrafish (Danio rerio)[J]. Gene,2008,427(1):32-41. [84] Dyer K D, Rosenberg H F. The RNase a superfamily: generation of diversity and innate host defense[J]. Molecular diversity,2006,10(4):585-597. [85] Rosenberg H F. Recombinant human eosinophil cationic protein ribonuclease activity is not essential for cytotoxicity[J]. Journal of Biological Chemistry,1995,270(14):7876-7881. [86] Futami J, Tsushima Y, Murato Y, et al. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans[J]. DNA and cell biology,1997,16(4):413-419. [87] Hayano K, Iwama M, Sakamoto H, et al. Characterization of poly C preferential ribonuclease from chicken liver[J]. Journal of biochemistry,1993,114(1):156-162. [88] Klenova E M, Botezato I, Laudet V, et al. Isolation of a cDNA clone encoding the RNase-superfamily-related gene highly expressed in chicken bone marrow cells[J]. Biochemical and biophysical research communications,1992,185(1):231-239. [89] Nakano T, Graf T. Identification of genes differentially expressed in two types of v-myb-transformed avian myelomonocytic cells[J]. Oncogene,1992,7(3):527-534. [90] Barnard E A, Cohen M S, Gold M H, et al. Evolution of ribonuclease in relation to polypeptide folding mechanisms[J]. Nature,1972,240:395-398. [91] Zhao W, Beintema J J, Hofsteenge J. The amino acid sequence of iguana ( Iguana iguana ) pancreatic ribonuclease[J]. European Journal of Biochemistry,1994,219(1-2):641–646. [92] Beintema J J, Broos J, Meulenberg J, et al. The amino acid sequence of snapping turtle (Chelydra serpentina) ribonuclease[J]. European Journal of Biochemistry,1985,153(2):305-312. [93] Katekaew S, Torikata T, Araki T. The complete amino acid sequence of green turtle (Chelonia mydas) egg white ribonuclease[J]. The protein journal,2006,25(5):316-327. [94] Crollius H R, Weissenbach J. Fish genomics and biology[J]. Genome research,2005,15(12):1675-1682. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||