[1]农业部种植业管路局. 中国种植业信息网-农作物数据库. 2011, http://zzys.agri.gov.cn/. [2]吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3): 298-310. [3]Schlesier J, Rohde M, Gerhardt S, et al. A conformational switch triggers nitrogenase protection from oxygen damage by shethna protein II (FeSII)[J]. Journal of the American Chemical Society, 2016, 138(1): 239. [4]Camacho-Cristóbal J, Lunar L, Lafont F, et al. Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves[J]. Journal of Plant Physiology, 2004, 161(7): 879-881. [5]方正, 吕世华, 张福锁. 小麦、油菜耐缺锰能力田间比较研究[J]. 河北农业大学学报, 2000, 23(3): 1-4. [6]Bonanomi G, Antignani V, Barile E, et al. Decomposition of Medicago sativa residues affects phytotoxicity, fungal growth and soil-borne pathogen diseases[J]. Journal of Plant Pathology, 2011, 93(1): 57-69. [7]Huang L F, Song L X, Xia X J, et al. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 2013, 39(2): 232-242. [8]谢星光, 戴传超, 苏春沦, 等. 内生真菌对花生残茬腐解及土壤酚酸含量的影响[J]. 生态学报, 2015, 35(11): 3836-3845. [9]Wang X, Yang X, Chen S, et al. Corrigendum: zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis[J]. Frontiers in Plant Science, 2016, 6(e34783). [10]马洪波, 李传哲, 宁运旺, 等. 硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J]. 江苏农业学报, 2015(5): 1024-1030. [11]丁春霞, 周峰, 华春. 盐胁迫下植物光系统Ⅱ的光谱学和蛋白质亚基研究进展[J]. 天津农业科学, 2016, 22(5): 5-7. [12]José J F B D S, Silva I R D, Barros N F D, et al. Boron mobility in eucalyptus clones.[J]. Revista Brasileira De Ciência Do Solo, 2009, 33(6): 1733-1744. [13]胡华锋, 马闯, 介晓磊, 等. 钼对紫花苜蓿草产量及矿质元素含量和吸收量的影响[J]. 西南农业学报, 2008, 21(5): 1333-1337. [14]韦莉莉, 卢昌熠, 丁晶, 等. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J]. 生态学报, 2016, 36(14): 4233-4243. [15]贺学礼, 马丽, 孟静静, 等. 不同水肥条件下AM真菌对丹参幼苗生长和营养成分的影响[J]. 生态学报, 2012, 32(18): 5721-5728. [16]王红新. 丛枝菌根真菌在植物修复重金属污染土壤中的作用[J]. 中国土壤与肥料, 2010(5): 1-5. [17]Saikkonen, Kari, W?li, et al. Evolution of endophyte–plant symbioses[J]. Trends in Plant Science, 2004, 9(6): 275-280. [18]Schulz B, Boyle C. The endophytic continuum[J]. Mycological Research, 2005, 109(6): 661-686. [19]Krings M, Taylor T N, Hass H, et al. Fungal endophytes in a 400-million-year[J]. New Phytologist, 2007, 174(3): 648-657. [20]K?hl L, Lukasiewicz C E, Heijden M G A V D. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils[J]. Plant Cell and Environment, 2016, 39(1): 136-146. [21]Jehne W, Thompson C H. Endomycorrhizae in plant colonization on coastal sand-dunes at Cooloola, Queensland[J]. Austral Ecology, 2006, 6(3): 221-230. [22]廖继佩, 林先贵, 曹志洪. 内外生菌根真菌对重金属的耐受性及机理[J]. 土壤, 2003, 35(5): 370-377. [23]钱旭, 甘会云, 杜勇涛, 等. 龙南钾矿区常见蕨类植物可培养内生真菌的多样性[J]. 广西植物, 2016, 36(3): 342-348. [24]姜道宏. 植物内生真菌及其展望[J]. 中国生物防治学报, 2015, 31(5): 742-749. [25]谢丽华, 王国红, 杨民和. 内生真菌及其对宿主植物生态适应性的影响[J]. 菌物研究, 2006, 4(3): 98-106. [26]苏春沦, 王宏伟, 谢星光, 等. 内生真菌与苍术粉对连作花生根际微生物区系和微量元素的影响[J]. 生态学报, 2016, 36(7): 2052-2065. [27]Wei Zhang, Xing-Xiang Wang, Zhen Yang, et al. Physiological mechanisms behind endophytic fungus Phomopsis liquidambari -mediated symbiosis enhancement of peanut in a monocropping system[J]. Plant and Soil, 2017: 1-18. [28]Xie X G, Fu W Q, Zhang F M, et al. The endophytic fungus Phomopsis liquidambari increases nodulation and N2 fixation in Arachis hypogaea by enhancing hydrogen peroxide and nitric oxide signalling[J]. Microbial Ecology, 2017: 1-14. [29]徐文婷, 张雅琼, 董文汉, 等. 石斛内生真菌固体菌剂对铁皮石斛组培苗促生作用研究[J]. 西南农业学报, 2014, 27(1): 317-324. [30]Mustafa G, Randoux B, Tisserant B, et al. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew[J]. Mycorrhiza, 2016, 26(7): 685-697. [31]马琼, 黄建国. 菌根及其在植物吸收矿质元素营养中的作用[J]. 吉林农业科学, 2003, 28(2):41-43. [32]Akhtar A, Sharf R. Vesicular Arbuscular Mycorrhizal ( VAM ) Fungi : A tool for sustainable agriculture[J]. American Journal of Plant Nutrition and Fertilization Technology, 2015, 5(2):40-49. [33]A. K. Srivastava, Shyam Singh. Citrus Decline: Soil Fertility and Plant Nutrition[J]. Journal of Plant Nutrition, 2009, 32(2): 197-245. [34]葛均青, 于贤昌, 王竹红. 丛枝菌根(AM)及其在园艺作物上的应用[J]. 山东农业大学学报自然科学版, 2003, 34(2): 303-306. [35]曾曙才, 苏志尧, 陈北光, 等. VA菌根真菌对植物养分吸收与传递的影响[J]. 西南林业大学学报, 2005, 25(1): 72-75. [36]吴强盛, 袁芳英, 费永俊, 等. 丛枝菌根真菌对白三叶根系构型和糖含量的影响[J]. 草业学报, 2014, 23(1): 199-204. [37]宋亚娜, 郑伟文, 王贺. AM菌根和花生/小麦间作对花生根系质外体铁库形成的影响[J]. 中国农业科学, 2001, 34(5): 568-571. [38]彭丽媛, 熊兴政, 李艳,等. 锰对外生菌根真菌生长、养分吸收、有机酸分泌和菌丝体中锰分布的影响[J]. 生态学报, 2016, 36(10): 2819-2825. [39]李华, 黄建国, 袁玲. 铝和锰对外生菌根真菌生长、养分吸收及分泌作用的影响[J]. 环境科学, 2013, 34(1): 315-320. [40]Andrade S A L, Abreu C A, Abreu M F D, et al. Influence of lead additions on arbuscular mycorrhiza and Rhizobium, symbioses under soybean plants[J]. Applied Soil Ecology, 2004, 26(2): 123-131. [41]何树斌, 郭理想, 李菁,等. 丛枝菌根真菌与豆科植物共生体研究进展[J]. 草业学报, 2017, 26(1): 187-194. [42]肖雪毅, 陈保冬, 朱永官. 丛枝菌根真菌对铜尾矿上植物生长和矿质营养的影响[J]. 环境科学学报, 2006, 26(2): 312-317. [43]韩亚超, 谢贤安. 丛枝菌根真菌Funneliformis mosseae锌转运体基因FmZnT1的克隆与表达分析[J]. 基因组学与应用生物学, 2016(4): 867-878. [44]郭军康, 董明芳, 丁永祯,等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 2015(7): 1228-1234. [45]Zhang W, Wang H W, Wang X X, et al. Enhanced nodulation of peanut when co-inoculated with fungal endophyte Phomopsis liquidambari and bradyrhizobium[J]. Plant Physiology and Biochemistry, 2015, 98:1-11. [46]胡丽燕, 李馨, 戴传超. 广谱植物内生真菌枫香拟茎点霉生态功能的研究进展[J]. 中国农学通报, 2017, 33(9): 48-57. [47]Rabie G H. Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi[J]. 1998, 141(3): 159-166. [48]Abdalla M H, Elenany A W, Nafady N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil.[J]. Microbiological Research, 2014, 169(1): 49-58. [49]方爱国, 李春杰. Neotyphodium属禾草内生真菌和球囊霉属菌根真菌对野大麦生长的影响[J]. 草业科学, 2014, 31(3): 457-461. [50]孟森. 林木细根氮素吸收动态及氮转运蛋白基因表达[D]. 西北农林科技大学, 2016. [51]Manuel G G, Viviana E, ángela S, et al. Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia:[J]. Frontiers in Plant Science, 2016, 7(105): 1088. [52]Stevenson D W. Shoot apex organization and origin of the rhizome-borne roots and their associated gaps in dennstaedtia cicutaria[J]. American Journal of Botany, 1976, 63(5): 673-678. [53]张晓. 磷酸盐转运蛋白OsPT5/OsPT7与质子焦磷酸酶AVP1D影响植物磷素吸收转运和生长发育的机制研究[D]. 南京农业大学博士学位论文, 2014. [54]丁效东, 张林, 李淑仪, 等. 丛枝菌根真菌与根瘤菌接种对大豆根瘤分布及磷素吸收的影响[J]. 植物营养与肥料学报, 2012, 18(3): 662-669. [55]王宏伟, 王兴祥, 吕立新,等. 施加内生真菌对花生连作土壤微生物和酶活性的影响[J]. 应用生态学报, 2012, 23(10): 2693-2700. [56]陈利云, 居永霞, 周志宇. 豆科植物根际微量元素含量特征[J]. 土壤通报, 2013,44(3): 641-646. [57]王从彦, 曹震, 王磊, 等. 豆科植物对根际土壤微生物种群及代谢的影响[J]. 生态环境学报, 2013(1): 85-89. [58]赵财, 柴强, 乔寅英, 等. 禾豆间距对间作豌豆“氮阻遏”减缓效应的影响[J]. 中国生态农业学报, 2016, 24(9): 1169-1176. [59]段倩倩, 杨晓红, 黄先智. 植物与丛枝菌根真菌在共生早期的信号交流[J]. 微生物学报, 2015, 55(7): 819-825. [60]Chen F, Ren C G, Zhou T, et al. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea[J]. Scientific reports, 2016, 6(e37435). [61]Yedukondalu N, Arora P, Wadhwa B, et al. Diapolic acid A-B from an endophytic fungus, Diaporthe terebinthifolii depicting antimicrobial and cytotoxic activity[J]. Journal of Antibiotics, 2016. 70(2): 212-215. [62]孟丽, 简在友. 微量元素对红豆杉菌根菌生长的影响[C]. 全国药用植物和植物药学术研讨会. 2006. [63]Schuck S, Camehl I, Gilardoni P A, et al. HSPRO controls early Nicotiana attenuata seedling growth during interaction with the fungus Piriformospora indica[J]. Plant Physiology, 2012, 160(2): 929-943. [64]Kaiser B N, Moreau S, Castelli J, et al. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport[J]. Plant Journal, 2003, 35(3): 295-304. [65]Slatni T, Krouma A, Aydi S, et al. Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris L) subjected to iron deficiency[J]. Plant and Soil, 2008, 312(1): 49-57. [66]Slatni T, Dell'Orto M, Ben S I, et al. Immunolocalization of H(+)-ATPase and IRT1 enzymes in N(2)-fixing common bean nodules subjected to iron deficiency[J]. Journal of Plant Physiology, 2012, 169(3): 242-248. [67]田萌萌. 丛枝菌根真菌吸收同化外源氮产生精氨酸的研究[D]. 浙江师范大学, 2011. [68]金海如. 丛枝菌根菌丝精氨酸双向运转并分解为鸟氨酸[J]. 中国科学:生命科学, 2008(11): 1048-1055. [69]马继芳, 金海如. 菌根真菌对有机氮吸收利用的研究进展[J]. 浙江师范大学学报, 2011, 34(4): 457-463. [70]唐明娟, 郭顺星. 菌根增强植物抗病性机理的研究进展[J]. 微生物学通报, 2000, 27(6): 446-449. [71]李俊喜, 刘润进. 菌根真菌菌剂防治作物土传病害潜力分析[J]. 植物病理学报, 2007, 37(1): 1-8.
|