[1] Wong V.N.L., Greene S.B., Dalal R.C., et al. Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manage, 2010, 26, 2-11. [2] Ca?edo, M., Hawkins C.P., Kefford B.J., et al. Saving freshwater from salts. Science, 2016, 351, 914-916. [3] 李远. 黄河三角洲土壤及其红粘层的地球化学特征与环境意义[D].中国科学院烟台海岸带研究所,2016. [4] 范晓梅, 刘高焕, 唐志鹏, 等. 黄河三角洲土壤盐渍化影响因素分析. 水土保持学报, 2010, 24(1): 139-144. [5] 武兰芳,柏林川,欧阳竹,王春晶. 山东省环渤海平原区粮食产出潜力与技术途径分析.中国生态农业学报,2014, 22(6): 682-689. [6] Guan B., Yu J.b., Cao D., et al. The ecological restoration of heavily degraded saline wetland in the Yellow River Delta. Clean-Soil, Air, Water, 2013, 41(7): 690-696. [7] 李建国,濮励杰,朱明,等. 土壤盐渍化研究现状及未来研究热点. 地理学报,2012,67 (9):1233-1245 [8] Machlis G.E. China addresses food and environment security. Science, 2015, 347, 836. [9] 吴景贵. 土壤颗粒的功能研究进展. 吉林农业大学学报,2008,30 (4):529-537. [10] Pardo A., Amato M., Chiaranda F.Q. Relationships between soil structure, root distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water distribution. European Journal of Agronomy, 2000, 13: 39-45. [11] Lal R., Shukla M.K. Principles of Soil Physics. New York, Academic, Marcel Dekker, Inc. 2004, 12-256. [12] Hong S., Hendrickx J.M. Soil salinity in arid Riparian areas. American Geophysical Union, Fall Meeting, 2002, 12: 796-810. [13] Marsan F.A., Biasioli M., Kralj T., et al. Metals in particle-size fractions of the soils of ?ve European cities. Environmental Pollution, 2008, 152: 73-81. [14] McNeill J.R., Winiwarter V. Breaking the Sod: Humankind, History, and Soil. Science,2004,304: 1627-1629. [15] Walter W.D., Walsh D.P., Farnsworth M.L., et al. Soil clay content underlies prion infection odds. Nature Communications, 2011b, 2, 200. [16] Qin S.P., Hu C.S., He X.H., et al. Soil organic carbon, nutrients and relevant enzyme activities in particle-size fractions under conservational versus traditional agricultural management. Applied Soil Ecology, 2010, 45(3): 152-159. [17] Zhou M.H., Butterbach K., Vereecken H., et al. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Global Change Biology, 2017, 23, 1338-1352. [18] 山东省土壤肥料工作站. 山东土种志. 北京:中国农业出版社,1993,563-606 [19] 贾利梅,毛伟兵,孙玉霞,等. 不同改良材料对粘质盐土物理性状和棉花产量的影响,中国农学通报,2017,33(13):81 - 87 [20] 山东省土壤肥料工作站. 山东土壤. 北京:中国农业出版社,1994,271-283 [21] 陈建国,周文浩,陈强. 小浪底水库运用十年黄河下游河道的再造床. 水利学报,2012,43(2):127-135 [22] 胡春宏,陈绪坚,陈建国. 黄河水沙空间分布及其变化过程研究. 水利学报,2008,39(5):518-527 [23] 楚纯洁,李亚丽. 近60年黄河干流水沙变化及其驱动因素. 2013,27(5):41-47 [24] 胡健,孙蓬蓬,戴清,等. 小浪底水库运用对下游引黄灌区的影响. 节水灌溉,2010,3:26-29 [25] 吴景贵. 土壤颗粒的功能研究进展. 吉林农业大学学报, 2008, 30 (4): 529-537. [26] 李保国, 任图生, 张佳宝. 土壤物理学研究的现状、挑战与任务. 土壤学报, 2008, 45(5): 810-816. [27] Fan X,Pedroli B,Liu G,et al. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation Development,2012,23: 175-189 [28] Northey J.E., Christen E.W.,Ayars J.E.,et al. Occurrence and measurement of salinity stratification in shallow groundwater in the Murrumbidgee irrigation area. Agricultural Water Management,2006,81: 23-40 [29] 罗金明,邓伟,张晓平,等. 盐渍土系统土壤水-地下水转化规律研究.生态环境,2007,16(6):1742-1747 [30] 管孝艳,王少丽,高占义,等.盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系.生态学报,2012,32( 4):1202-1210 [31] 谭军利,康跃虎,焦艳平,等. 不同种植年限覆膜滴灌盐碱地土壤盐分离子分布特征.农业工程学报,2008,24(6):59-63 [32] Lal R. Carbon management in agriculture soils. Mitigation and Adaptation Strategies for Global Change,2007,12: 303-322 [33] 裴自友,温辉芹,任永康,等. 小麦的耐盐性及其改良研究进展. 作物研究,2012,26(1):93-98 [34] 蔡铁,徐海成,尹燕枰,等. 外源 IAA、GA3和ABA 影响不同穗型小麦分蘖发生的机制. 作物学报,2013,39(10):1835-1842 [35] 翁跃进,马雅琴,杨德光. 小麦耐盐性鉴定评价技术规范. 北京:中国农业出版社,2002
|