[1] 周连杰,谢彦庆,徐文,等.去除遮阴后自然强光对小偃54和8602及其杂交后代光合特性的影响[J].作物学报,2015,41(5): 813-819 [2] Tracy L,David MK,Christine AR. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis [J]. Current Opinion in Biotechnology,2012, 23:215-220 [3] Thormahlen I,Zupok A,Rescher J,et al. Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light [J]. Molecular Plant,2017, 10:168-182 [4] Ruban AV. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage [J]. Plant Physiology,2016, 170:1903-1916 [5] Tikhonov AN. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways [J]. Plant Physiology and Biochemistry,2014, 81:163-183 [6] Silveira JAG,Carvalho FEL. Proteomics, photosynthesis and salt resistance in crops: An integrative view [J]. Journal of Proteomics,2016, 143:24-35 [7] Wobbe L,Bassi R,Kruse O. Multi-level light capture control in plants and green algae [J]. Trends in Plant Science,2016, 21(1):55-68 [8] 焦德茂,顾行影,季本华,等. 水稻耐光氧化种质资源的简易筛选鉴定技术[J]. 中国水稻科学,1991,5(3):133-136 [9] 吴长艾,孟庆伟,邹琦,等.小麦不同品种叶片对光氧化胁迫响应的比较研究[J]. 作物学报,2003,29(3):339-344 [10] 顾和平,朱成松,陈新,等.大豆抗旱性和抗光氧化特性相互关系的研究[J].中国油料作物学报,1998, 20(3):51-55 [11] 彭长连,林植芳,林桂珠. 光氧化胁迫下几种植物叶片的超氧自由基产生速率和光合特性[J]. 植物生理学报,2000, 26(2):81-87 [12] 晁赢,李俊,张春雷,等.甘蓝型油菜幼苗对短期氧化胁迫的光合响应[J]. 中国油料作物学报,2012,34(6):613-619 [13]李涛,丁在松,关东明,等.水稻远缘杂交后代的耐强光和抗光氧化特性[J].作物学报,2006,32 (12): 1913-1916 [14] 林植芳,彭长连.不同光合途径植物叶圆片对光氧化作用响应的比较[J].植物学报,1998,40 (8): 721-72 [15] 赵瑞,许瀚卿,樊冬丽,等.气候变化对中国花生生产的影响研究进展[J].中国农学通报,2017,33(21):114-117 [16]王芳,杨莎,郭峰,等.钙对花生(Arachis hypogaea L.)幼苗生长、活性氧积累和光抑制程度的影响[J].生态学报,2015,35(5):1-11 [17]李霞,严建民,季本华,等.光氧化和遮荫条件下水稻的光合生理特性的品种差异[J].作物学报,1999,25(3): 301-308 [18]李霞,焦德茂.水稻耐光氧化和耐荫特性的生理基础[J].植物学报,2000,42(12): 1271-1277 [19]焦德茂,李霞,黄雪清,等.不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系[J].中国农业科学,2002,35(5):487-492 [20]李霞,霍垲,陈平波,等.粳稻光氧化特性筛选方法的改良及应用[J].分子植物育种,2015,13(4):748-754
|