Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (5): 88-95.doi: 10.11924/j.issn.1000-6850.casb2020-0051
Previous Articles Next Articles
Liu Yongbo(), Hu Liang, Cao Yan, Tang Jiangyun, Lei Bo(
)
Received:
2020-04-28
Revised:
2020-10-16
Online:
2021-02-15
Published:
2021-02-25
Contact:
Lei Bo
E-mail:dylyb618@163.com;689300@sina.com
CLC Number:
Liu Yongbo, Hu Liang, Cao Yan, Tang Jiangyun, Lei Bo. Image Segmentation for Maize Leaf Disease Based on U-Net[J]. Chinese Agricultural Science Bulletin, 2021, 37(5): 88-95.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0051
Input_size | (256,256) |
---|---|
Batch_size | 8 |
Epoch | 100 |
Learning_rate | 0.001 |
Gamma | 0.1 |
Learning_rate_decay(epoch) | 20 |
GPU_Num | 1 |
GPU_Memory | 8G |
Training time | 25h18m* |
Input_size | (256,256) |
---|---|
Batch_size | 8 |
Epoch | 100 |
Learning_rate | 0.001 |
Gamma | 0.1 |
Learning_rate_decay(epoch) | 20 |
GPU_Num | 1 |
GPU_Memory | 8G |
Training time | 25h18m* |
Input_size (n) | Change brightness | Mean IOU | GPU time | CPU time |
---|---|---|---|---|
128 | N | 0.9270 | 32ms | 78ms |
128 | Y | 0.9174 | 32ms | 78ms |
256 | N | 0.9295 | 84ms | 143ms |
256 | Y | 0.9363 | 84ms | 143ms |
Input_size (n) | Change brightness | Mean IOU | GPU time | CPU time |
---|---|---|---|---|
128 | N | 0.9270 | 32ms | 78ms |
128 | Y | 0.9174 | 32ms | 78ms |
256 | N | 0.9295 | 84ms | 143ms |
256 | Y | 0.9363 | 84ms | 143ms |
Input_size (n) | Change brightness | Mean IOU | GPU time | CPU time |
---|---|---|---|---|
128 | N | 0.9430 | 32ms | 78ms |
128 | Y | 0.9374 | 32ms | 78ms |
256 | N | 0.9531 | 84ms | 143ms |
256 | Y | 0.9633 | 84ms | 143ms |
Input_size (n) | Change brightness | Mean IOU | GPU time | CPU time |
---|---|---|---|---|
128 | N | 0.9430 | 32ms | 78ms |
128 | Y | 0.9374 | 32ms | 78ms |
256 | N | 0.9531 | 84ms | 143ms |
256 | Y | 0.9633 | 84ms | 143ms |
病情级别 | 症状描述 |
---|---|
1 | 叶片上无病斑或仅在穗位下部叶片上有零星病斑,病斑占叶面积少于或等于5% |
3 | 穗位下部叶片上有少量病斑,占叶面积6%~10%,穗位上部叶片有零星病斑 |
5 | 穗位下部叶片上病斑较多,占叶面积11%~30%,穗位上部叶片有少量病斑 |
7 | 穗位下部叶片或穗位上部叶片有大量病斑,病斑相连,占叶面积31%~70% |
9 | 全株叶片基本为病斑覆盖,叶片枯死 |
病情级别 | 症状描述 |
---|---|
1 | 叶片上无病斑或仅在穗位下部叶片上有零星病斑,病斑占叶面积少于或等于5% |
3 | 穗位下部叶片上有少量病斑,占叶面积6%~10%,穗位上部叶片有零星病斑 |
5 | 穗位下部叶片上病斑较多,占叶面积11%~30%,穗位上部叶片有少量病斑 |
7 | 穗位下部叶片或穗位上部叶片有大量病斑,病斑相连,占叶面积31%~70% |
9 | 全株叶片基本为病斑覆盖,叶片枯死 |
[1] | 武鹏鸣. 我国玉米育种问题及对策分析[J]. 粮食科技与经济, 2019,44(6):90-92. |
[2] | 沈冰冰. 玉米茎腐病和大斑病生防菌的筛选及其促生作用的研究[D]. 哈尔滨:东北农业大学, 2019. |
[3] | 李新疆, 王赏贵, 王丹, 等. 基于HSV色彩空间的红枣叶片病斑分割方法[J]. 安徽农学通报, 2020,26(4):85-87. |
[4] | 马浚诚, 温皓杰, 李鑫星, 等. 基于图像处理的温室黄瓜霜霉病诊断系统[J]. 农业机械学报, 2017,48(2):195-202. |
[5] | 蒲一鸣. 基于机器学习的水稻病害识别和叶龄检测算法研究[D]. 哈尔滨:哈尔滨工业大学, 2019. |
[6] | 吴韵清, 吴鹏, 陈北京, 等. 基于残差全卷积网络的图像拼接定位算法[J]. 应用科学学报, 2019,37(5):651-662. |
[7] | 段杰, 崔志明, 沈艺, 等. 一种改进FCN的肝脏肿瘤CT图像分割方法[J]. 图学学报, 2020,41(1):100-107. |
[8] | 刘永波, 雷波, 曹艳, 等. 基于深度卷积神经网络的玉米病害识别[J]. 中国农学通报, 2018,34(36):159-164. |
[9] | 刁智华, 袁万宾, 罗雅雯, 等. 基于图像处理的小麦白粉病病斑生长模型构建[J]. 中国农机化学报, 2019,40(6):158-161. |
[10] |
Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014,39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 URL pmid: 27244717 |
[11] | Evan Shelhamer, Jonathan Long, Trevor Darrell. Fully Convolutional Networks for Semantic Segmentation[M]. IEEE Computer Society, 2017. |
[12] | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[J]. 2015. |
[13] | 臧睦君. 图像场景识别的特征研究[D]. 长春:吉林大学, 2015. |
[14] | 钟成. 基于机器学习的水果图像自动识别与分割算法研究[D]. 衡阳:南华大学, 2018. |
[15] | 王俊强, 李建胜, 丁波. 深度学习语义分割方法在遥感影像分割中的性能分析[J]. 计算机测量与控制, 2019,27(7):231-235. |
[16] | 魏芳. 基于语义分割的车载路面裂缝自动识别技术研究[D]. 西安:长安大学, 2019. |
[17] | 王爽. 深度学习在图像分类中的应用研究[D]. 济南:山东师范大学, 2016. |
[18] | 张永宏, 蔡朋艳, 陶润喆, 等. 基于改进U-Net网络的遥感图像云检测[J]. 测绘通报, 2020(3):17-20,34. |
[19] | Mohamed Kerkech, Adel Hafiane, Raphael Canals. Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach[J]. Elsevier B.V., 2020,174. |
[20] | 景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述[J]. 计算机工程, 2020,46(10) 1-17. |
[21] | 任守纲, 贾馥玮, 顾兴健, 等. 反卷积引导的番茄叶部病害识别及病斑分割模型[J]. 农业工程学报, 2020,36(12):186-195. |
[22] | 王振, 张善文, 王献锋. 基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J]. 江苏农业学报, 2019,35(5):1054-1060. |
[23] | Ajeet Ram Pathak, Manjusha Pandey, Siddharth Rautaray. Application of Deep Learning for Object Detection[J]. Elsevier B.V., 2018,132. |
[24] | Deng J, Dong W, Socher R, et al. ImageNet: A large-scale hierarchical image database[C] // IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2009. |
[25] | 赵建敏, 李艳, 李琦, 等. 基于卷积神经网络的马铃薯叶片病害识别系统[J]. 江苏农业科学, 2018,46(24):251-255. |
[26] | Oriol J. Bosch, Melanie Revilla, Ezequiel Paura. Answering Mobile Surveys With Images: An Exploration Using a Computer Vision API[J]. Social Science Computer Review, 2019,37(5). |
[27] | 冯立萍. 玉米病虫害防治及高产栽培技术的推广[J]. 黑龙江科学, 2020,11(8):100-101. |
[28] | 王振, 师韵, 李玉彬. 基于改进全卷积神经网络的玉米叶片病斑分割[J]. 计算机工程与应用, 2019,55(22):127-132. |
[29] | 陈晓娟, 文成敬. 四川省玉米穗腐病研究初报[J]. 西南农业大学学报, 2002(1):21-23,25. |
[30] | Miao S, Liao R . Agent-Based Methods for Medical Image Registration[M] // Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. 2019. |
[1] | SUN Yu, ZHANG Yongmei, WU Yujun. Recognition of Hemerocallis citrina Leaf Disease Based on PSO and SVM [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 135-140. |
[2] | CHONG Yang, ZHAO Jiankai, MA Xiucai. Technology Research and System Design of Automatic Forage Observation [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 126-133. |
[3] | Yang Hongyun, Luo Jianjun, Wan Ying, Sun Aizhen. Application of Computer Vision Technology in Nitrogen Nutrition Diagnosis of Rice: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(16): 149-155. |
[4] | . Designing a Grading Device for Fresh Tobacco Leaves Based on Machine Vision Detection [J]. Chinese Agricultural Science Bulletin, 2019, 35(16): 133-140. |
[5] | . Maize Diseases Identification Based on Deep Convolutional Neural Network [J]. Chinese Agricultural Science Bulletin, 2018, 34(36): 159-164. |
[6] | . Soybean Grain Detection Method Based on MATLAB Image Processing [J]. Chinese Agricultural Science Bulletin, 2018, 34(30): 20-25. |
[7] | Yuan Kaifang,Tao Dongcai,Xu Hao and Xie Wei. Pepper Grading Based on the Minimum Bounding Rectangle [J]. Chinese Agricultural Science Bulletin, 2016, 32(16): 166-170. |
[8] | Hu Lin. Research on Adjusted Coefficient Method for Leaf Area Measurement and Its Error [J]. Chinese Agricultural Science Bulletin, 2015, 31(5): 228-233. |
[9] | . OpenCV-Based Measurement System for Plant Leaf Geometry Parameters Using Android Mobile Phone [J]. Chinese Agricultural Science Bulletin, 2015, 31(35): 236-244. |
[10] | Liu Xinting,Kuang Yingchun,Chen Shang,Ou Mingwen and Zeng Wenhui. Research on Apple Grading Based on the Minimum Circumscribed Circle Diameter [J]. Chinese Agricultural Science Bulletin, 2015, 31(20): 239-243. |
[11] | . Study on Growth Dynamics of Maize Ear after Anthesis Based on Image Processing [J]. Chinese Agricultural Science Bulletin, 2014, 30(27): 234-240. |
[12] | Li Jun1, Chen Zhende2. Study on the Color Analysis of Tomato Yellow Leaf Curl Virus Disease Based on Digital Images [J]. Chinese Agricultural Science Bulletin, 2013, 29(31): 96-100. |
[13] | . The Study on Automatic Feature Extraction of Leaf Lobes [J]. Chinese Agricultural Science Bulletin, 2012, 28(27): 152-156. |
[14] | . Nitrogen Status Diagnosis of Rice Based on a Digital Camera [J]. Chinese Agricultural Science Bulletin, 2012, 28(24): 111-117. |
[15] | . Application of Image Processing Technology in Rice Canopy Leaf Area Index [J]. Chinese Agricultural Science Bulletin, 2011, 27(3): 65-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||