Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (18): 95-101.doi: 10.11924/j.issn.1000-6850.casb2020-0806
Special Issue: 生物技术
Previous Articles Next Articles
Received:
2020-12-21
Revised:
2021-02-08
Online:
2021-06-25
Published:
2021-07-13
Contact:
Yu Bing
E-mail:18845125228@163.com;ybgirl1234@sina.com
CLC Number:
Ma Yue, Yu Bing. nsLTPs Genes Involved in Plant Response to Stress: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 95-101.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0806
类型 | GPI锚定位点 | 间距模式 |
---|---|---|
Ⅰ | 无 | C-X8,9-C-X13-17-CC-X18-20-CXC-X19-24-C-X7-14-C |
Ⅱ | 无 | C-X7-C-X13,15-CC-X8-10-CXC-X16, 21, 23-C-X5-6-C |
C | 无 | C-X9-C-X14, 16, 19-CC-X9-CXC-X12-C-X6-C |
D | 无 | C-X6-14-C-X8-18-CC-X9-17-CXC-X19-28-C-X6-14-C |
E | 无 | C-X11,13-C-X15-16-CC-X9-CXC-X21-26-C-X6-7-C |
F | 无 | C-X7-C-X11-CC-X10-CXC-X19-C-X9-C |
G | 有 | C-X6-11-C-X14-19-CC-X12-13-CXC-X20-34-C-X5-12-C |
H | 无 | C-X8,11-C-X13,16-CC-X9-CXC-X21-C-X9-C |
J | 无 | C-X11,14-C-X14-15-CC-X12-CXC-X20-22-C-X6-C |
K | 无 | C-X11-C-X14-CC-X13-CXC-X24-C-X7-C |
类型 | GPI锚定位点 | 间距模式 |
---|---|---|
Ⅰ | 无 | C-X8,9-C-X13-17-CC-X18-20-CXC-X19-24-C-X7-14-C |
Ⅱ | 无 | C-X7-C-X13,15-CC-X8-10-CXC-X16, 21, 23-C-X5-6-C |
C | 无 | C-X9-C-X14, 16, 19-CC-X9-CXC-X12-C-X6-C |
D | 无 | C-X6-14-C-X8-18-CC-X9-17-CXC-X19-28-C-X6-14-C |
E | 无 | C-X11,13-C-X15-16-CC-X9-CXC-X21-26-C-X6-7-C |
F | 无 | C-X7-C-X11-CC-X10-CXC-X19-C-X9-C |
G | 有 | C-X6-11-C-X14-19-CC-X12-13-CXC-X20-34-C-X5-12-C |
H | 无 | C-X8,11-C-X13,16-CC-X9-CXC-X21-C-X9-C |
J | 无 | C-X11,14-C-X14-15-CC-X12-CXC-X20-22-C-X6-C |
K | 无 | C-X11-C-X14-CC-X13-CXC-X24-C-X7-C |
nsLTPs基因名称 | 植物材料 | 植物逆境 | 作用机制 | 参考文献 | ||
---|---|---|---|---|---|---|
BrLTP2.1 | 甘蓝型油菜 | 真菌和细菌病原体 | 提高了转基因植株的抗病性[ | [ | ||
HvLTP | 大麦 | 真菌和细菌病原体 | 提高了转基因植株的抗病性[ | [ | ||
CALTP1、CALTP2 | 胡椒 | 真菌和细菌病原体 | 提高了转基因植株的抗病性[ | [ | ||
PsnsLTP | 烟草 | 炭疽病病菌、猝倒病病菌 | 提高了转基因植株的抗病性[ | [ | ||
AtLTP4.4 | 拟南芥 | 天花粉霉菌 | 提高了转基因植株的抗病性[ | [ | ||
StnsLTP1 | 马铃薯 | 青枯菌 | 提高了转基因植株的抗病性[ | [ | ||
AtLTPG1 | 拟南芥 | 真菌 | 基因沉默植株易感病[ | [ | ||
BrLTP2.1 | 甘蓝型油菜 | 高温 | 增强了转基因植株的热稳定性[ | [ | ||
StnsLTP1 | 马铃薯 | 高温 | 增强了转基因植株的热稳定性[ | [ | ||
ZmLTP | 玉米 | 低温 | 提高了转基因植株的耐冷性[ | [ | ||
BG-14 | 无芒雀麦 | 低温 | 提高了转基因植株的耐冷性[ | [ | ||
ZmLTP | 玉米 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
OsDIL | 水稻 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
CALTP1 | 胡椒 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
StnsLTP1 | 马铃薯 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
NtLTP4 | 烟草 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
LpLtp1、LpLtp2 | 潘那利番茄 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
NtLTP4 | 烟草 | 盐 | 提高了转基因植株的耐盐性[ | [ | ||
StnsLTP1 | 马铃薯 | 盐 | 提高了转基因植株的耐盐性[ | [ | ||
AZI1 | 拟南芥 | 盐 | 基因沉默植株对盐胁迫敏感[ | [ | ||
ZmLTP | 玉米 | 盐 | 提高了转基因植株的耐盐性[ | [ | ||
AtLTP1、AtLTP3 | 拟南芥 | 盐 | 提高了转基因植株的耐盐性[ | [ | ||
CALTP1 | 胡椒 | 盐 | 提高了转基因植株的耐盐性[ | [ |
nsLTPs基因名称 | 植物材料 | 植物逆境 | 作用机制 | 参考文献 | ||
---|---|---|---|---|---|---|
BrLTP2.1 | 甘蓝型油菜 | 真菌和细菌病原体 | 提高了转基因植株的抗病性[ | [ | ||
HvLTP | 大麦 | 真菌和细菌病原体 | 提高了转基因植株的抗病性[ | [ | ||
CALTP1、CALTP2 | 胡椒 | 真菌和细菌病原体 | 提高了转基因植株的抗病性[ | [ | ||
PsnsLTP | 烟草 | 炭疽病病菌、猝倒病病菌 | 提高了转基因植株的抗病性[ | [ | ||
AtLTP4.4 | 拟南芥 | 天花粉霉菌 | 提高了转基因植株的抗病性[ | [ | ||
StnsLTP1 | 马铃薯 | 青枯菌 | 提高了转基因植株的抗病性[ | [ | ||
AtLTPG1 | 拟南芥 | 真菌 | 基因沉默植株易感病[ | [ | ||
BrLTP2.1 | 甘蓝型油菜 | 高温 | 增强了转基因植株的热稳定性[ | [ | ||
StnsLTP1 | 马铃薯 | 高温 | 增强了转基因植株的热稳定性[ | [ | ||
ZmLTP | 玉米 | 低温 | 提高了转基因植株的耐冷性[ | [ | ||
BG-14 | 无芒雀麦 | 低温 | 提高了转基因植株的耐冷性[ | [ | ||
ZmLTP | 玉米 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
OsDIL | 水稻 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
CALTP1 | 胡椒 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
StnsLTP1 | 马铃薯 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
NtLTP4 | 烟草 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
LpLtp1、LpLtp2 | 潘那利番茄 | 干旱 | 提高了转基因植株的耐旱性[ | [ | ||
NtLTP4 | 烟草 | 盐 | 提高了转基因植株的耐盐性[ | [ | ||
StnsLTP1 | 马铃薯 | 盐 | 提高了转基因植株的耐盐性[ | [ | ||
AZI1 | 拟南芥 | 盐 | 基因沉默植株对盐胁迫敏感[ | [ | ||
ZmLTP | 玉米 | 盐 | 提高了转基因植株的耐盐性[ | [ | ||
AtLTP1、AtLTP3 | 拟南芥 | 盐 | 提高了转基因植株的耐盐性[ | [ | ||
CALTP1 | 胡椒 | 盐 | 提高了转基因植株的耐盐性[ | [ |
[1] | Kader J. Proteins and the intracellular exchange of lipids.I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber[J]. Biochimica et Biophysica acta, 1975,380(1):31-44. |
[2] | Kader J. Lipid-Transfer Proteins In Plants[J]. Plant Physiology, 1996,47:627-654. |
[3] | 黄岳, 朱璐, 罗人和, 等. 拟南芥和水稻非特异脂质转运蛋白的分子进化、表达模式以及在花药发育中的功能分析[J]. 基因组学与应用生物学, 2015,34(7):1510-1521. |
[4] |
Hincha D, Neukamm B, Sror H, et al. Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family[J]. Plant Physiology, 2001,125(2):835-846.
doi: 10.1104/pp.125.2.835 URL |
[5] |
Cameron K, Teece M, Smart L J P. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco[J]. Plant Physiology, 2006,140(1):176-183.
doi: 10.1104/pp.105.069724 URL |
[6] |
Dhar N, CaruananJ, Erdem I. An Arabidopsis DISEASE RELATED NONSPECIFIC LIPID TRANSFER PROTEIN 1 is required for resistance against various phytopathogens and tolerance to salt stress[J]. Gene, 2020,753:144802.
doi: 10.1016/j.gene.2020.144802 URL |
[7] | 李蔚, 曲春浦, 许志茹, 等. 西伯利亚蓼非特异性脂质转移蛋白基因PsnsLTP的功能分析[J]. 植物研究. 2015,35(1):547-553. |
[8] |
Tian N, Liu F, Wang P, et al. Overexpression of BraLTP2, a Lipid Transfer Protein of Brassica napus, Results in Increased Trichome Density and Altered Concentration of Secondary Metabolites[J]. International Journal of Molecular Sciences, 2018,19(6):1265.
doi: 10.3390/ijms19051265 URL |
[9] |
Lascombe M, Bakan B, Buhot N. The structure of "defective in induced resistance" protein of Arabidopsis thaliana, DIR1, reveals a new type of lipid transfer protein[J]. Protein Science : a publication of the Protein Society, 2008,17(9):1522-1530.
doi: 10.1110/ps.035972.108 URL |
[10] |
Megeressa M, Siraj B, Zarina S. Structural characterization and in vitro lipid binding studies of non-specific lipid transfer protein 1 (nsLTP1) from fennel (Foeniculum vulgare) seeds[J]. Scientific Reports, 2020,10(1):21243.
doi: 10.1038/s41598-020-77278-6 URL |
[11] | McLaughlin J E, Al Darwish N, Garcia-Sanchez J. A lipid transfer protein has antifungal and antioxidant activity and suppresses Fusarium head blight disease and DON accumulation in transgenic wheat[J]. Phytopathology, 2020,16(2):173. |
[12] |
Deng W, Li R, Xu Y, et al. A lipid transfer protein variant with a mutant eight-cysteine motif causes photoperiod- and thermo-sensitive dwarfism in rice[J]. Journal of Experimental Botany, 2020,71(4):1294-1305.
doi: 10.1093/jxb/erz500 URL |
[13] |
Fleury C, Gracy J, Gautier M F, et al. Comprehensive classification of the plant non-specific lipid transfer protein superfamily towards its sequence-structure-function analysis[J]. PeerJ, 2019,7:e7504.
doi: 10.7717/peerj.7504 URL |
[14] | Xie W Q, Zhao L Q, Bai W Y, et al. The effects of calmodulin on the lipid-binding activity of CaM-binding protein-10 and maize non-specific lipid transfer protein[J]. 植物生理与分子生物学学报, 2006,32(6):679-684. |
[15] |
Boutrot F, Chantret N, Gautier M. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining[J]. BMC genomics, 2008,9:86.
doi: 10.1186/1471-2164-9-86 pmid: 18291034 |
[16] | Bai W Y, Zhao L Q, Li Z P. et al. Cloning and expression of cDNA for maize nonspecific lipid transfer protein as well as calmodulin-binding activity analysis of the expression product[J]. 植物生理与分子生物学学报, 2006,32(5):570-576. |
[17] |
Meng C, Yan Y, Liu Z, et al. Systematic Analysis of Cotton Non-specific Lipid Transfer Protein Family Revealed a Special Group That Is Involved in Fiber Elongation[J]. Frontiers in Plant Science, 2018,9:1285.
doi: 10.3389/fpls.2018.01285 URL |
[18] |
Tousheh M, Miroliaei M, Asghar Rastegari A, et al. Computational evaluation on the binding affinity of non-specific lipid-transfer protein-2 with fatty acids[J]. Computers In Biology And Medicine, 2013,43(11):1732-1738.
doi: 10.1016/j.compbiomed.2013.08.012 URL |
[19] | Aboushanab A. 番茄非特异性脂质转移蛋白的鉴定与表达分析[D]. 武汉: 华中农业大学, 2017. |
[20] |
Wang N J, Lee C C, Cheng C S, et al. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB)[J]. BMC genomics, 2012,13(1):19.
doi: 10.1186/1471-2164-13-19 URL |
[21] |
Carvalho A O, Gomes V. Role of plant lipid transfer proteins in plant cell physiology-a concise review[J]. Peptides, 2007,28(5):1144-1153.
doi: 10.1016/j.peptides.2007.03.004 URL |
[22] | Schmitt A, Sathoff A, Holl C. The major nectar protein of Brassica rapa is a non-specific lipid transfer protein, BrLTP2.1, with strong antifungal activity[J]. Journal of Experimental Botany, 2018,69(22):5587-5597. |
[23] | Pan Y, Li J, Jiao L. A Non-specific Setaria italica Lipid Transfer Protein Gene Plays a Critical Role under Abiotic Stress[J]. Frontiers in Plant Science, 2016,7:1752. |
[24] |
Ooi L S, Tian L, Su M. Isolation, characterization, molecular cloning and modeling of a new lipid transfer protein with antiviral and antiproliferative activities from Narcissus tazetta[J]. Peptides, 2008,29(12):2101-2109.
doi: 10.1016/j.peptides.2008.08.020 URL |
[25] |
Wei K, Zhong X. Non-specific lipid transfer proteins in maize[J]. BMC Plant Biology, 2014,14:281.
doi: 10.1186/s12870-014-0281-8 URL |
[26] |
Ossendorp B C, Voorhout W F, van Amerongen A. Tissue-specific distribution of a peroxisomal 46-kDa protein related to the 58-kDa protein (sterol carrier protein x; sterol carrier protein 2/3-oxoacyl-CoA thiolase)[J]. Arch Biochem Biophys, 1996,334(2):251-260.
pmid: 8900399 |
[27] |
Dansen T B, Westerman J, Wouters F S, et al. High-affinity binding of very-long-chain fatty acyl-CoA esters to the peroxisomal non-specific lipid-transfer protein (sterol carrier protein-2)[J]. Biochemical Journal, 1999,339(Pt 1):193-199.
doi: 10.1042/bj3390193 URL |
[28] |
Hoh F, Pons J, Gautier M, et al. Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding[J]. Acta Crystallogr D Biol Crystallogr, 2005,61:397-406.
doi: 10.1107/S0907444905000417 URL |
[29] |
Castro M, Gerhardt I, Orrù S, et al. Purification and characterization of a small (7.3 kDa) putative lipid transfer protein from maize seeds[J]. Journal of Chromatography, 2003,794(1):109-114.
doi: 10.1016/S0021-9673(97)00902-3 URL |
[30] |
Edstam M M, Viitanen L, Salminen T A, et al. Evolutionary history of the non-specific lipid transfer proteins[J]. Molecular Plant, 2011,4(6):947-964.
doi: 10.1093/mp/ssr019 URL |
[31] |
Gonorazky A G, Regente M C, Canal L. Stress induction and antimicrobial properties of a lipid transfer protein in germinating sunflower seeds[J]. Journal of Plant Physiology, 2005,162(6):618-624.
doi: 10.1016/j.jplph.2004.10.006 URL |
[32] | Diz M S S, Carvalho A O, Rodrigues R, et al. Antimicrobial peptides from chili pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells[J]. Biochimica et Biophysica Acta, 2006,1760(9):1323-1332. |
[33] |
Lee S B, Go Y S, Bae H J, et al. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola[J]. Plant Physiology, 2009,150(1):42-54.
doi: 10.1104/pp.109.137745 URL |
[34] |
McLaughlin J, Bin-Umer M, Widiez T, et al. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin[J]. PLOS One, 2015,10(6):e0130204.
doi: 10.1371/journal.pone.0130204 URL |
[35] |
Pitzschke A, Datta S, Persak H. Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3[J]. Molecular Plant, 2014,7(4):722-738.
doi: 10.1093/mp/sst157 pmid: 24214892 |
[36] |
Safi H, Wangorsch A, Lidholm J, et al. Identification and molecular characterization of allergenic non-specific lipid-transfer protein from durum wheat (Triticum turgidum)[J]. Clinical Experimental Allergy, 2019,49(1):120-129.
doi: 10.1111/cea.2019.49.issue-1 URL |
[37] |
D'Agostino N, Buonanno M, Ayoub J, et al. Identification of non-specific Lipid Transfer Protein gene family members in Solanum lycopersicum and insights into the features of Sola l 3 protein[J]. Scientific Reports, 2019,9(1):1607.
doi: 10.1038/s41598-018-38301-z pmid: 30733555 |
[38] |
Martín-Pedraza L, González M, Gómez F, et al. Two nonspecific lipid transfer proteins (nsLTPs) from tomato seeds are associated to severe symptoms of tomato-allergic patients[J]. Molecular Nutrition Food Research, 2016,60(5):1172-1182.
doi: 10.1002/mnfr.201500782 URL |
[39] |
Wu G, Robertson A, Liu X, et al. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin, and sphingosine in bromegrass (Bromus inermis)[J]. Journal of Plant Physiology, 2004,161(4):449-458.
doi: 10.1078/0176-1617-01259 URL |
[40] | 刘芳, 卢长明. 植物非特异脂质转运蛋白研究现状与展望[J]. 遗传, 2013,35(03):307-314. |
[41] |
Trevino M, OConnell, M. Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression[J]. Plant Physiology, 1998,116(4):1461-1468.
doi: 10.1104/pp.116.4.1461 URL |
[42] |
Cheng C S, Samuel D, Liu Y J, et al. Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense[J]. Biochemistry, 2004,43(43):13628-13636.
doi: 10.1021/bi048873j URL |
[43] |
Kristensen A K, Brunstedt J, Nielsen K K, et al. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves[J]. Plant Science, 2000,155(1):31-40.
doi: 10.1016/S0168-9452(00)00190-4 URL |
[44] |
Wang S Y, Wu J H, Ng T B, et al. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean[J]. Peptides, 2004,25(8):1235-1242.
doi: 10.1016/j.peptides.2004.06.004 URL |
[45] |
Hoh F, Pons J, Gautier M, et al. Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding[J]. Acta Crystallogr D Biol Crystallogr, 2005,61:397-406.
doi: 10.1107/S0907444905000417 URL |
[46] | 徐扬. 非特异性脂转移蛋白NtLTP4作为正调控因子参与烟草对非生物和生物胁迫的响应[D]. 泰安: 山东农业大学, 2018. |
[47] | Hincha D. Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing. Philosophical transactions of the Royal Society of London[J]. Biological Sciences, 2002,357(1423):909-916. |
[48] |
Gómez-Casado C, Díaz-Perales A. Allergen-Associated Immunomodulators: Modifying Allergy Outcome[J]. Archivum Immunologiae et Therapiae Experimentalis, 2016,64(5):339-347.
doi: 10.1007/s00005-016-0401-2 pmid: 27178664 |
[49] |
Guo L, Yang H, Zhang X, et al. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis[J]. Journal of Experimental Botany, 2013,64(6):1755-1767.
doi: 10.1093/jxb/ert040 URL |
[50] |
Li C, Yue J, Wu X, et al. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress[J]. Journal of Experimental Botany, 2014,65(18):5415-5427.
doi: 10.1093/jxb/eru302 URL |
[1] | JIA Yechun, CHEN Runyi, HE Zelin, NI Hongtao. Abiotic Stress on Sugar Beet: Research Progress [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 33-40. |
[2] | Xie Daolong, Tang Zhi, Li Hongye, Fu Xiaoxia, Wang Fan, Liu Xiaoxia, Qin Zuodong, He Fulin, Luo Ying. GbASR gene from Ginkgo biloba: Cloning, Bioinformatics and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(32): 34-41. |
[3] | Hao Xiaocong, Wang Weiwei, Zhang Fengting, Sun Rui, Fang Zhaofeng, Liu Shan, Cao Zhishen, Zhu Wengen, Zhao Changping, Wang Dezhou, Tang Yimiao. TaHPPR Gene in Wheat: Cloning and Expression Analysis [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 129-138. |
[4] | Jiang Xueyong, Yue Yuanchun, Sun Yangcun, Gao Dongni, Ping Wenxiang, Ge Jingping. Interspecific Relationship of Lactobacillus paracasei Co-cultured with Bacillus sp. Affects Bacteriocin Production [J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 124-132. |
[5] | Dong Chunyan, Liang Weihong, Cheng Hui, Yu Dongming, Lv Dong, Sun Yanfeng, Miao Chen. Plant Lipoxygenases: Advance of the Function in Stress Response [J]. Chinese Agricultural Science Bulletin, 2020, 36(33): 102-107. |
[6] | Zou Fengkang, Jia Hailun, Ding Guangzhou, Chen Li. Phosphatidylinositol Transporters Gene SbSEC14 C in Sugarbeet: Cloning and Expression Analysis Under Low Temperature Stress [J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 39-48. |
[7] | Wang Shuang, Li Haiying. Plant E3 Ubiquitin Ligase and Abiotic Stress: Research Progress [J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 47-53. |
[8] | Liu Jingyan, Yan Shuangyong, Zhang Rongxue, Su Jingping, Sun Yue, Sun Linjing. Low Temperature Tolerance of Rice: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 1-5. |
[9] | Wang Qiong, Guo Yijing, Kang Lin, Zhang Shaoying, Yu Youwei, Song Xiaoqing. Physiological and Biochemical Functions of CO in Plant: A Review [J]. Chinese Agricultural Science Bulletin, 2020, 36(12): 86-90. |
[10] | . Development of Virus Induced Gene Silencing and Application of VIGS in Plant Abiotic Stresses [J]. Chinese Agricultural Science Bulletin, 2016, 32(9): 131-136. |
[11] | Hu Maolong,Long Weihua,Gao Jianqin,Zhang Jiefu,Chen Song and Pu Huiming. Cloning and Expression of BnSTO Encoding B-box-type Zinc-finger Proteins in Rapeseed [J]. Chinese Agricultural Science Bulletin, 2016, 32(36): 96-103. |
[12] | Zhang Jiyu,Wang Gang,Huang Shengnan,Xuan Jiping,Jia Xiaodong and Guo Zhongren. Functions of Alcohol Dehydrogenase Family in Abiotic Stress Responses in Plants [J]. Chinese Agricultural Science Bulletin, 2015, 31(10): 246-250. |
[13] | . Research Progress on Plant Germin-like Proteins [J]. Chinese Agricultural Science Bulletin, 2014, 30(30): 246-254. |
[14] | . Advance of Research on biological function of Abscisic acid (ABA) [J]. Chinese Agricultural Science Bulletin, 2014, 30(21): 205-210. |
[15] | . Advance on Insect Strategy of Expressing Heat Shock Protein to Response Abiotic Stress [J]. Chinese Agricultural Science Bulletin, 2013, 29(30): 181-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||