
Chinese Agricultural Science Bulletin ›› 2025, Vol. 41 ›› Issue (23): 145-154.doi: 10.11924/j.issn.1000-6850.casb2024-0773
					
													JIN  Yuchun(
), ZHEN  Yuanyuan, LIU  Ping(
)
												  
						
						
						
					
				
Received:2024-12-19
															
							
																	Revised:2025-08-06
															
							
															
							
																	Online:2025-08-19
															
							
																	Published:2025-08-19
															
						JIN Yuchun, ZHEN Yuanyuan, LIU Ping. Maize Leaf Disease Recognition Based on Transferred and Improved MobileNetV3[J]. Chinese Agricultural Science Bulletin, 2025, 41(23): 145-154.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2024-0773
| 输入尺寸(高×宽×通道数) | 卷积操作 | 扩展尺寸 | 输出通道 | SE模块 | 激活函数 | 步长 | 
|---|---|---|---|---|---|---|
| 224×224×3 | conv2d | - | 16 | - | HS | 2 | 
| 112×112×16 | bneck,3×3 | 16 | 16 | - | RE | 1 | 
| 112×112×16 | bneck,3×3 | 64 | 24 | - | RE | 2 | 
| 56×56×24 | bneck,3×3 | 72 | 24 | - | RE | 1 | 
| 56×56×24 | bneck,5×5 | 72 | 40 | √ | RE | 2 | 
| 28×28×40 | bneck,5×5 | 120 | 40 | √ | RE | 1 | 
| 28×28×40 | bneck,5×5 | 120 | 40 | √ | RE | 1 | 
| 28×28×40 | bneck,3×3 | 240 | 80 | - | HS | 2 | 
| 14×14×80 | bneck,3×3 | 200 | 80 | - | HS | 1 | 
| 14×14×80 | bneck,3×3 | 184 | 80 | - | HS | 1 | 
| 14×14×80 | bneck,3×3 | 184 | 80 | - | HS | 1 | 
| 14×14×80 | bneck,3×3 | 480 | 112 | √ | HS | 1 | 
| 14×14×112 | bneck,3×3 | 672 | 112 | √ | HS | 1 | 
| 14×14×112 | bneck,5×5 | 672 | 160 | √ | HS | 2 | 
| 7×7×160 | bneck,5×5 | 960 | 160 | √ | HS | 1 | 
| 7×7×160 | bneck,5×5 | 960 | 160 | √ | HS | 1 | 
| 7×7×160 | conv2d,1×1 | - | 900 | - | HS | 1 | 
| 7×7×960 | pool,7×7 | - | - | - | - | 1 | 
| 1×1×960 | conv2d,1×1,NBN | - | 1280 | - | HS | 1 | 
| 1×1×1280 | conv2d,1×1,NBN | - | k | - | - | 1 | 
| 输入尺寸(高×宽×通道数) | 卷积操作 | 扩展尺寸 | 输出通道 | SE模块 | 激活函数 | 步长 | 
|---|---|---|---|---|---|---|
| 224×224×3 | conv2d | - | 16 | - | HS | 2 | 
| 112×112×16 | bneck,3×3 | 16 | 16 | - | RE | 1 | 
| 112×112×16 | bneck,3×3 | 64 | 24 | - | RE | 2 | 
| 56×56×24 | bneck,3×3 | 72 | 24 | - | RE | 1 | 
| 56×56×24 | bneck,5×5 | 72 | 40 | √ | RE | 2 | 
| 28×28×40 | bneck,5×5 | 120 | 40 | √ | RE | 1 | 
| 28×28×40 | bneck,5×5 | 120 | 40 | √ | RE | 1 | 
| 28×28×40 | bneck,3×3 | 240 | 80 | - | HS | 2 | 
| 14×14×80 | bneck,3×3 | 200 | 80 | - | HS | 1 | 
| 14×14×80 | bneck,3×3 | 184 | 80 | - | HS | 1 | 
| 14×14×80 | bneck,3×3 | 184 | 80 | - | HS | 1 | 
| 14×14×80 | bneck,3×3 | 480 | 112 | √ | HS | 1 | 
| 14×14×112 | bneck,3×3 | 672 | 112 | √ | HS | 1 | 
| 14×14×112 | bneck,5×5 | 672 | 160 | √ | HS | 2 | 
| 7×7×160 | bneck,5×5 | 960 | 160 | √ | HS | 1 | 
| 7×7×160 | bneck,5×5 | 960 | 160 | √ | HS | 1 | 
| 7×7×160 | conv2d,1×1 | - | 900 | - | HS | 1 | 
| 7×7×960 | pool,7×7 | - | - | - | - | 1 | 
| 1×1×960 | conv2d,1×1,NBN | - | 1280 | - | HS | 1 | 
| 1×1×1280 | conv2d,1×1,NBN | - | k | - | - | 1 | 
| 输入尺寸(高×宽×通道数) | 卷积操作 | 扩展尺寸 | 输出通道 | SE模块 | 激活函数 | 步长 | 
|---|---|---|---|---|---|---|
| 224×224×3 | conv2d,3×3 | - | 16 | - | HS | 2 | 
| 112×112×16 | bneck,3×3 | 16 | 16 | √ | RE | 2 | 
| 56×56×16 | bneck,3×3 | 72 | 24 | - | RE | 2 | 
| 28×28×24 | bneck,3×3 | 88 | 24 | - | RE | 1 | 
| 28×28×24 | bneck,5×5 | 96 | 40 | √ | HS | 2 | 
| 14×14×40 | bneck,5×5 | 240 | 40 | √ | HS | 1 | 
| 14×14×40 | bneck,5×5 | 240 | 40 | √ | HS | 1 | 
| 14×14×40 | bneck,5×5 | 120 | 48 | √ | HS | 1 | 
| 14×14×48 | bneck,5×5 | 144 | 48 | √ | HS | 1 | 
| 14×14×48 | bneck,5×5 | 288 | 96 | √ | HS | 2 | 
| 7×7×96 | bneck,5×5 | 576 | 96 | √ | HS | 1 | 
| 7×7×96 | bneck,5×5 | 576 | 96 | √ | HS | 1 | 
| 7×7×96 | conv2d,1×1 | - | 576 | √ | HS | 1 | 
| 7×7×576 | pool,7×7 | - | - | - | - | 1 | 
| 1×1×576 | conv2d,1×1,NBN | - | 1024 | - | HS | 1 | 
| 1×1×1024 | conv2d,1×1,NBN | - | k | - | - | 1 | 
| 输入尺寸(高×宽×通道数) | 卷积操作 | 扩展尺寸 | 输出通道 | SE模块 | 激活函数 | 步长 | 
|---|---|---|---|---|---|---|
| 224×224×3 | conv2d,3×3 | - | 16 | - | HS | 2 | 
| 112×112×16 | bneck,3×3 | 16 | 16 | √ | RE | 2 | 
| 56×56×16 | bneck,3×3 | 72 | 24 | - | RE | 2 | 
| 28×28×24 | bneck,3×3 | 88 | 24 | - | RE | 1 | 
| 28×28×24 | bneck,5×5 | 96 | 40 | √ | HS | 2 | 
| 14×14×40 | bneck,5×5 | 240 | 40 | √ | HS | 1 | 
| 14×14×40 | bneck,5×5 | 240 | 40 | √ | HS | 1 | 
| 14×14×40 | bneck,5×5 | 120 | 48 | √ | HS | 1 | 
| 14×14×48 | bneck,5×5 | 144 | 48 | √ | HS | 1 | 
| 14×14×48 | bneck,5×5 | 288 | 96 | √ | HS | 2 | 
| 7×7×96 | bneck,5×5 | 576 | 96 | √ | HS | 1 | 
| 7×7×96 | bneck,5×5 | 576 | 96 | √ | HS | 1 | 
| 7×7×96 | conv2d,1×1 | - | 576 | √ | HS | 1 | 
| 7×7×576 | pool,7×7 | - | - | - | - | 1 | 
| 1×1×576 | conv2d,1×1,NBN | - | 1024 | - | HS | 1 | 
| 1×1×1024 | conv2d,1×1,NBN | - | k | - | - | 1 | 
| 模型 | 训练集准确率/% | 损失值 | 精确率/% | 召回率/% | 
|---|---|---|---|---|
| MobileNetV3-Small | 96.30 | 0.122 | 96.19 | 96.31 | 
| 迁移+MobileNetV3-Small | 98.20 | 0.039 | 98.25 | 98.25 | 
| 迁移+MobileNetV3-Small-CBAM | 98.50 | 0.035 | 98.55 | 98.57 | 
| 迁移+MobileNetV3-Small-dilated | 98.85 | 0.030 | 98.88 | 98.87 | 
| 迁移+MobileNetV3-Small-CD | 99.09 | 0.029 | 98.75 | 98.75 | 
| 模型 | 训练集准确率/% | 损失值 | 精确率/% | 召回率/% | 
|---|---|---|---|---|
| MobileNetV3-Small | 96.30 | 0.122 | 96.19 | 96.31 | 
| 迁移+MobileNetV3-Small | 98.20 | 0.039 | 98.25 | 98.25 | 
| 迁移+MobileNetV3-Small-CBAM | 98.50 | 0.035 | 98.55 | 98.57 | 
| 迁移+MobileNetV3-Small-dilated | 98.85 | 0.030 | 98.88 | 98.87 | 
| 迁移+MobileNetV3-Small-CD | 99.09 | 0.029 | 98.75 | 98.75 | 
| [1] |  
											 李少昆, 王崇桃. 我国玉米产量变化及增产因素分析[J]. 玉米科学, 2008(4):26-30. 
																						 | 
										
| [2] |  
											 张娣. 我国玉米病害现状及防治措施[J]. 南方农机, 2017, 48(17):57. 
																						 | 
										
| [3] |  
											 | 
										
| [4] |  
											 佘奎军, 刘永进, 贺奇, 等. 2001—2015年宁夏玉米病虫害发生特征与损失分析[J]. 环境昆虫学报, 2017, 39(5):1071-1080. 
																						 | 
										
| [5] |  
											 | 
										
| [6] |  
											 | 
										
| [7] |  
											 | 
										
| [8] |  
											 江顺, 黄红星, 莫里楠, 等. 基于改进AlexNet的岭南水稻虫害识别方法研究[J]. 江苏农业科学, 2023, 51(23):187-195. 
																						 | 
										
| [9] |  
											 李明泽, 张静, 雷亚平, 等. 基于卷积神经网络的棉花关键生育时期识别[J]. 核农学报, 2024, 38(10):2020-2031.  
																							doi: 10.11869/j.issn.1000-8551.2024.10.2020  | 
										
| [10] |  
											 | 
										
| [11] |  
											 王大庆, 禄琳, 于兴龙, 等. 基于深度迁移学习的EfficientNet玉米叶部病害识别[J]. 东北农业大学学报, 2023, 54(5):66-76. 
																						 | 
										
| [12] |  
											 杨明欣, 张耀光, 刘涛. 基于卷积神经网络的玉米病害小样本识别研究[J]. 中国生态农业学报(中英文), 2020, 28(12):1924-1931. 
																						 | 
										
| [13] |  
											 凌慕菲, 杨冬风. 基于改进YOLOv5s模型的玉米叶片病害识别[J]. 农业灾害研究, 2023, 13(8):126-128. 
																						 | 
										
| [14] |  
											 | 
										
| [15] |  
											 | 
										
| [16] |  
											 崔金荣, 魏文钊, 赵敏. 基于改进MobileNetV3的水稻病害识别模型[J]. 农业机械学报, 2023, 54(11):217-224. 
																						 | 
										
| [17] |  
											 | 
										
| [18] |  
											 师翊, 王应宽, 王菲, 等. MCBPnet:一种高效的轻量级青杏识别模型[J]. 农业工程学报, 2025, 41(5):156-164. 
																						 | 
										
| [19] |  
											 | 
										
| [20] |  
											 吴迪, 肖衍, 沈学军, 等. 基于改进Res2Net与迁移学习的水果图像分类[J]. 电子科技大学学报, 2025, 54(1):62-71. 
																						 | 
										
| [21] |  
											 刘鑫鹏, 栾悉道, 谢毓湘, 等. 迁移学习研究和算法综述[J]. 长沙大学学报, 2018, 32(5):28-31. 
																						 | 
										
| [22] |  
											 王中璞, 吴正香, 尤美路, 等. 基于改进MobileNetV2的棉花颜色分级检测[J]. 棉纺织技术, 2024, 52(6):15-21. 
																						 | 
										
| [23] |  
											 戴敏, 孙文靖, 缪宏. 基于轻量化CBAM-GoogLeNet的辣椒病虫害识别[J]. 中国农机化学报, 2025, 46(2):224-229. 
																						 | 
										
| [24] |  
											 谭泗桥, 陈涵, 朱磊, 等. 基于改进YOLOv8m的稻田害虫识别方法[J]. 农业工程学报, 2025, 41(2):185-195. 
																						 | 
										
| [25] |  
											 徐胜军, 欧阳朴衍, 郭学源, 等. 多尺度特征融合空洞卷积ResNet遥感图像建筑物分割[J]. 光学精密工程, 2020, 28(7):1588-1599. 
																						 | 
										
| [26] |  
											 | 
										
| [27] |  
											 赖勤波, 马正华, 朱蓉. 基于注意力机制和空洞卷积的无人机图像目标检测[J]. 计算机应用与软件, 2025, 42(2):227-235. 
																						 | 
										
| [1] | ZHANG Zhicong, CUI Dong, GUO Jinfeng, UMUT Hasan, LI Liang. Research on Identification of Rice Disease and Pest Based on Transfer Learning and ResNet-18 [J]. Chinese Agricultural Science Bulletin, 2025, 41(2): 109-116. | 
| [2] | LING Shihao, YANG Fenli, HUANG Bohan, LI Yao, YANG Lian’an, YAN Linyue, HAO Beibei. Remote Sensing Extraction of Inland Saline Land Information Based on U-Net Skeleton Variant [J]. Chinese Agricultural Science Bulletin, 2025, 41(19): 151-158. | 
| [3] | LU Xiaowei, MENG Zhiqing. Wheat Disease Recognition Model Integrating Attention Mechanism and Multi-scale Convolution [J]. Chinese Agricultural Science Bulletin, 2023, 39(25): 147-154. | 
| [4] | HAO Jing, JIA Zongwei. Comparative Study on Apple Leaf Disease Recognition Models Based on Image Recognition [J]. Chinese Agricultural Science Bulletin, 2022, 38(12): 153-158. | 
| [5] | Li Bo, Jiang Zhaohui, Xie Jun, Rao Yuan, Zhang Wu. Leaf Disease Recognition of Horticultural Crops Based on Transfer Learning and Its Application [J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 138-143. | 
| [6] | Zhang Yutang, Xie Xiaochun. Single Tree Detection Method in Natural Environment: Based on Improved Faster-RCNN Network [J]. Chinese Agricultural Science Bulletin, 2021, 37(13): 135-146. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||