This study aimed to identify suitable maize varieties for maize-soybean strip intercropping promotion in the hilly areas of Chongqing. Using 24 maize varieties and the soybean variety ‘Yudou 11’ as experimental materials, with a 4:2 row ratio configuration of soybean to maize, the agronomic traits, yield and component traits of different maize varieties were compared, as well as the yield and component traits of soybeans under maize-soybean strip composite planting. The results revealed significant variations in maize plant characteristics under the intercropping system, with coefficient of variation (CV) reaching 74.13% for barren plants and over 100% for lodging rate, indicating substantial genotypic differences. Grain yield showed significant positive correlations with ear diameter, kernels per row, 100-kernel weight, bulk density and kernel length (P<0.05), while demonstrating highly significant negative correlations with barren plant rate and a significant negative correlations with ear tip barrenness. Path analysis showed the direct path coefficient for grain yield in ear length (0.484), kernel rows per ear (0.272), and 100-kernel weight (0.334) had direct positive effects on grain yield. The yield of 'Xianyu 1171', 'Keda 202', 'Jindan 9', 'Sanxiayu 23' and 'Jingyu 719' in all aspects of the performance was better, which were 10790.65 kg/hm2, 10034.5 kg/hm2, 9780.23 kg/hm2, 9595.40 kg/hm2 and 9442.72 kg/hm2, respectively, with an increase of 45.31%, 35.13%, 31.7%, 28.73% and 26.54%, respectively compared to the control. Significant differences were observed in the yield and yield components of 'Yudou 11' when intercropped with different maize varieties. Except for 'Jingyu 719' (618.84 kg/hm2), soybean yields intercropped with other maize varieties showed reductions compared to the control. Among them, the reductions in soybean yield were relatively lower when intercropped with 'Xida 889', 'Xianyu 1171', 'Yudan 32', 'Aiheyu 058', 'Rongyufengzan', and 'Sanxiayu 23', with reductions of 2.86%, 6.41%, 7.09%, 7.15%, 8.54%, and 8.7%, respectively. Comprehensive analysis identified 'Xianyu 1171', 'Sanxiayu 23', and 'Jingyu 719' as optimal varieties, which demonstrated superior agronomic performance, higher maize yields, and minimal negative impacts on soybean productivity, and making them suitable for maize-soybean strip intercropping systems in Chongqing's hilly regions.