[1] Boland G J, Hall R. Index of plant hosts of Sclerotinia sclerotiorum[J]. Can J Plant Pathol,1994,16:93-108.
[2] Bardin S D, Huang H C. Research on biology and control of Sclerotinia diseases in Canada[J]. Can J Plant Pathol,2001,23:88-98.
[3] Young C S, Clarkson J P, Smith J A, et al. Environmental conditions influencing Sclerotinia sclerotiorum infection and disease development in lettuce[J]. Plant Pathol,2004,53:387-397.
[4] Lee Y H, Cho Y S, Lee S W, et al. Chemical and biological controls of balloon flower stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum[J]. Plant Pathol J,2012,28:156-163.
[5] 李永红,王灏,李建厂,等.核盘菌对油菜、向日葵和大豆的侵染及其致病性分化研究[J].植物病理学报,2005,35(6):486-492.
[6] Li G Q, Huang H C, Miao H J, et al. Biological control of sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans[J]. Eur J Plant Pathol,2006,114:345-355.
[7] 李伟,李伟,周益军,等.江苏省油菜菌核病菌对多菌灵的敏感性[J].中国油料作物学报,2007,29(1):63-68.
[8] 魏中华,徐娟,郭明霞,等.国内多菌灵的研究进展[J].安徽农业科学,2015,43(3):125-127,141.
[9] 齐永霞,陈方新,苏贤岩,等.安徽省油菜菌核病菌对多菌灵的抗药性监测[J].中国农学通报,2006,22(9):371-373.
[10] Day D A, Whelan J, Millar A H, et al. Regulation of the alternative oxidase in plants and fungi[J]. Aust J Plant Physiol,1995,22:494-509.
[11] 梁五生,梁厚果.抗氰呼吸交替氧化酶研究进展[J].植物学通报,1997,14(2):9-16.
[12] Minagawa N, Koga S, Nakano M, et al. Possible involvement of superoxide anion in the induction of cyanide-resistant respiration in Hansenula anomala[J]. FEBS Lett,1992,302:217-219.
[13] Martins V P, Dinamarco T M, Soriani F M, et al. Involvement of an alternative oxidase in oxidative stress and mycelium-to-yeast differentiation in Paracoccidioides brasiliensis[J]. Eukaryot Cell,2011,10:237-248.
[14] Yukioka H, Inagaki S, Tanaka R, et al. Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide[J]. Biochim Biophys Acta,1998,1442:161-169.
[15] Akhter S, McDade H C, Gorlach J M, et al. Role of alternative oxidase gene in pathogenesis of Cryptococcus neoformans[J]. Infect Immun,2003,71:5794-5802.
[16] Xu T, Yao F, Liang W S, et al. Involvement of alternative oxidase in the regulation of growth, development, and resistance to oxidative stress of Sclerotinia sclerotiorum[J]. J Microbiol,2012,50:594-602.
[17] Xu T, Wang Y T, Liang W S, et al. Involvement of alternative oxidase in the regulation of Sclerotinia sclerotiorum sensitivity to fungicides of azoxystrobin and procymidone[J]. J Microbiol,2013,51:352-358.
[18] Ishii H, Fountaine J, Chung W H, et al. Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry[J]. Pest Manag Sci,2009,65:916-922.
[19] Banno S, Yamashita K, Fukumori F, et al. Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene[J]. Plant Pathol,2009,58:120-129.
[20] Tamura H, Mizutani A, Yukioka H, et al. Effect of the methoxyiminoacetamide fungicide, SSF129, on respiratory activity in Botrytis cinerea[J]. Pesticide Sci,1999,55:681-686.
[21] Affourtit C, Heaney S P, Moore A L. Mitochondrial electron transfer in the wheat pathogenic fungus Septoria tritici: on the role of alternative respiratory enzymes in fungicide resistance[J]. Biochim Biophys Acta,2000,1459:291-298.
[22] Miguez M, Reeve C, Wood P M, et al. Alternative oxidase reduces the sensitivity of Mycosphaerella graminicola to QoI fungicides[J]. Pest Manag Sci,2004,60:3-7.
[23] Yan L, Li M, Cao Y, et al. The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility[J]. J Antimicrob Chemother,2009,64:764-773.
[24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods,2001,25:402-408.
|