中国农学通报 ›› 2019, Vol. 35 ›› Issue (1): 50-56.doi: 10.11924/j.issn.1000-6850.casb18070050
李晓屿, Ralf Müller-Xing, Shahid Khan, 郑玉彩, 李玉花, 邢 倩
收稿日期:
2018-07-11
修回日期:
2018-08-02
接受日期:
2018-08-17
出版日期:
2019-01-02
发布日期:
2019-01-02
通讯作者:
邢 倩
基金资助:
Received:
2018-07-11
Revised:
2018-08-02
Accepted:
2018-08-17
Online:
2019-01-02
Published:
2019-01-02
摘要: 叶缘锯齿是叶片重要的形态特征之一,受到多种叶缘发育因子的调控。笔者回顾了国内外研究成果,详细分析了植物激素、CUC2(CUP SHAPED COTYLEDONE2)和MicroRNA 对叶缘锯齿发育的影响,总结了植物中各叶缘因子的表达与功能,并探讨了叶缘锯齿形成的分子机制及其意义。分析表明,在复杂的叶缘发育调控网络中,生长素与CUC2 对叶缘的调控起到非常重要的作用,大部分叶缘因子的调控功能依赖于生长素和CUC2。最后,展望了叶缘锯齿发育未来的研究方向与发展趋势,并对其以后的应用领域进行了预测。
李晓屿,Ralf Müller-Xing,Shahid Khan,郑玉彩,李玉花,邢 倩. 植物叶缘锯齿发育的研究进展[J]. 中国农学通报, 2019, 35(1): 50-56.
[1]Champagne C, Sinha N. Compound leaves: Equal to the sum of their parts[J]?Development,2004,131:4401-4412. [2]Nikovics K,SBlein T,SPeaucelle A, et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis[J].Plant Cell,2006,18(11):2929-2945. [3]Ferris K G, Rushton T, Greenlee A B, et al. Leaf shape evolution has a similar genetic architecture in three edaphic specialists within the Mimulus guttatus species complex[J].Ann Bot,2015, 116(2):213-223. [4]Vogel S. Leaves in the lowest and highest winds: Temperature, force and shape[J].New phytol,2009,183:13-26. [5]Siso S, Camarero J J, Gil-Pelegrin E. Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation[J].Trees,2001,15:341-345. [6]Semchenko M, Zobel K. The role of leaf lobation in elongation responses to shade in the rosette-forming forb Serratula tinctoria (Asteraceae) [J].Ann Bot London,2007,100:83-90. [7]晏艺真, 周坚华. 基于叶缘特征的植物图像分类检索[J].华东师范大学学报, 2015,4:154-163. [8]Dengler N G, Tsukaya H. Leaf morphogenesis in dicotyledons: current issues[J].Int J Plant Sci,2001,162:459-464. [9]Holtan H E E, Hake S. Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines[J].Genetics, 2003,165:1541-1550. [11]Benková E, Michniewicz M, Sauer M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation[J].Cell, 2003,115:591-602. [12]Kepinski S, Leyser O. Plant development: auxin in loops[J].Curr Biol, 2005,15:208-210. [13]Barkoulas M, Hay A, Kougioumoutzi E, et al. A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta[J].Nat Genet, 2008,40:1136-1141. [14]Koenig D, Bayer E, Kang J, et al. The Plant Cell, Auxin patterns Solanum lycopersicum leaf morphogenesis[J].Development, 2009,136:3997-3006. [15]Kawamura E, Horiguchi G. Tsukaya H. Mechanisms of leaf tooth formation in Arabidopsis[J].Plant J,2010,62(3):429-441. [16]Kasprzewska A, Carter R, Swarup R, et al. Auxin influx importers modulate serration along the leaf margin[J].Plant J,2015,83(4):705-718. [17]Tang Y, Zhao CY, Tan ST, et al. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078[J].PLoS Genet,2016,12(8):e1006252. [18]Bilsborough G D, Runions A, Barkoulas M, et al. Model for the regulation of Arabidopsis thaliana leaf margin development[J].Proc Natl Acad Sci U S A,2011,108(8):3424-3429. [19]G?lweiler L, Guan C, Müller A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue[J].Science,1998,282(5397):2226-2230. [20]Blilou I, Xu J, Wildwater M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J].Nature,2005,433(7021):39-44. [21]Petrásek J, Friml J. Auxin transport routes in plant development[J].Development,2009,136(16):2675-2688. [22]Zhou C, Han L, Hou C, et al. Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development[J].Plant Cell,2011,23(6):2106-2124. [23]邓 岩, 王兴春, 杨淑华, 等. 细胞分裂素:代谢、信号转导、交叉反应与农艺性状改良[J].植物学通报,2006,23(5):478-498. [24]Dello Ioio R, Galinha C, Fletcher A G, et al. A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis[J].Curr Biol,2012,22(18):1699-1704. [25]Shani E, Ben-Gera H, Shleizer-Burko S, et al. Cytokinin regulates compound leaf development in tomato[J].Plant Cell,2010,22(10):3206-3217. [26]Rupp H M, Frank M, Werner T, et al. Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem[J].Plant J,1999,18(5):557-563. [27]Jasinski S, Tattersall A, Piazza P, et al. PROCERA encodes a DELLA protein that mediates control of dissected leaf form in tomato[J].Plant J,2008,56(4):603-612. [28]Fleishon S, Shani E, Ori N, et al. Negative reciprocal interactions between gibberellin and cytokinin in tomato[J].New Phytol,2011,190(3):609-617. [29]Yamaguchi S. Gibberellin metabolism and its regulation[J].Annu Rev Plant Biol,2008,59:225-251. [30]Hay A, Kaur H, Phillips A, et al. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans[J].Curr Biol,2002,12(18):1557-1565. [31]Yanai O, Shani E, Russ D, et al. Gibberellin partly mediates LANCEOLATE activity in tomato[J].Plant J,2011,68(4):571-582. [32]Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant[J].Plant Cell,1997,9:841-857. [33]Vroemen C W, Mordhorst A P, Albrecht C, et al. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis[J].Plant Cell,2003,15:1563-1577. [34]Hibara K, Karim M R, Takada S, et al. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation[J].Plant Cell,2006,18:2946-2957. [35]Hasson A, Plessis A, Blein T, et al. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development[J].Plant Cell,2011,23(1):54-68. [36]Reinhart B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants[J].Genes Dev,2002,16(13):1616-1626. [37]Baker C C, Sieber P, Wellmer F, et al. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis[J].Curr Biol,2005,15(4):303-315. [38]Mallory A C, Dugas D V, Bartel D P, et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs[J].Curr Biol,2004,14(12):1035-1046. [39]Laufs P, Peaucelle A, Morin H, et al. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems[J].Development,2004,131(17):4311-4322. [40]Larue C T, Wen J, Walker J C. A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis[J].Plant J,2009,58(3):450-463. [41]Koyama T, Sato F, Ohme-Takagi M. Roles of miR319 and TCP Transcription Factors in Leaf Development[J].Plant Physiol.2017,175(2):874-885. [42]Palatnik J F, Wollmann H, Schommer C, et al.Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J].Developmental Cell,2007,13(1):115-125. [43]Chitwood D H, Sinha N R. Plant development: small RNAs and the metamorphosis of leaves[J].Curr Biol,2014,24(22):R1087-R1089. [44]Ohno C K, Reddy G V, Heisler M G, et al. The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development[J].Development,2004,131:1111-1122. [45]Palatnik J F, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs[J].Nature,2003,425:257-263. [46]李婉莎, 王春涛, 胡向阳. 拟南芥叶边缘锯齿状突变体的分离与鉴定[J].植物分类与资源学报,2012, 34 (1):28-32. [47]Rubio-Somoza I, Zhou C M, Confraria A, et al. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes[J].Curr Biol,2014,24(22):2714-2719. [48]Torii K U, Mitsukawa N, Oosumi T, et al. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats[J].Plant Cell,1996,8(4):735-746. [49]Tisné S, Reymond M, Vile D, et al. Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis[J].Plant Physiol,2008,148(2):1117-1127. [50]Shpak E D, Lakeman M B, Torii K U. Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape[J].Plant Cell,2003,15(5):1095-1110. [51]Masle J, Gilmore S R, Farquhar G D. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis[J].Nature,2005,436(7052):866-870. [52]Woodward C, Bemis S M, Hill E J, et al. Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases[J].Plant Physiol,2005,139(1):192-203. [53]Borevitz J O, Maloof J N, Lutes J, et al. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana[J].Genetics,2002,160(2):683-696. [54]Ghandilyan A, Ilk N, Hanhart C, et al. A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations[J].J Exp Bot,2009,60(5):1409-1425. [55]Chen M K, Wilson R L, Palme K, et al. ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia[J].Plant Physiol,2013,162(4):1978-1991. [56]Tameshige T, Okamoto S, Tasaka M et al. Impact of erecta mutation on leaf serration differs between Arabidopsis accessions[J].Plant Signal Behav.2016,11(12):e1261231. [57]Richardson L G L, Torii K U. Take a deep breath: peptide signalling in stomatal patterning and differentiation[J].J. Exp. Bot,2013,64:5243-5251. [58]Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases[J].J. Exp. Bot,2013,64:5335-5343. [59]Tameshige T, Okamoto S, Lee J S, et al. A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis[J].Curr Biol,2016,S0960-9822(16):30765-30765. [60]Hareven D, Gutfinger T, Parnis A, et al. The making of a compound leaf: genetic manipulation of leaf architecture in tomato[J].Cell,1996,84:735-744. [61]Janssen B J, Lund L, Sinha N. Overexpression of a homeobox gene, Le T6, reveals indeterminate features in the tomato compound leaf[J].Plant Physiol,1998,117:771-786. [62]Chuck G, Lincoln C, Hake S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis[J].Plant Cell,1996,8:1277-1289. [63]Byrne M E, Barley R, Curtis M, et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis[J].Nature,2000,408:967-971. [64]Ori N, Eshed Y, Chuck G, et al. Mechanisms that control knox gene expression in the Arabidopsis shoot[J].Development,2000,127:5523-5532. [65]Hay A, Barkoulas M, Tsiantis M. ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis[J].Development,2006,133:3955-3961. [66]Piazza P, Bailey C D, Cartolano M, et al. Arabidopsis thaliana leaf form evolved via loss of KNOX expression in leaves in association with a selective sweep[J].Current Biology,2010, 20,2223-2228. [67]Douglas S J, Chuck G, Dengler R E, et al. KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis[J].Plant Cell,2002,14:547-558. [68]Engelhorn J, Reimer J J, Leuz I, et al. Development-related PcG target in the apex 4 controls leaf margin architecture in Arabidopsis thaliana[J].Development,2012,139(14):2566-2575. [69]Prigge M J, Wagner D R. The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development[J].Plant Cell,2001,13:1263-1279. [70]Grigg S P, Canales C, Hay A, et al. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis[J].Nature,2005,437:1022-1026. [71]Lobbes D, Rallapalli G, Schmidt D D, et al. SERRATE: a new player on the plant microRNA scene[J].EMBO,2006,7(10):1052-1058. |
[1] | 李锐, 尚霄, 尚春树, 常利芳, 闫蕾, 白建荣. SSR荧光检测解析224份山西玉米自交系的遗传结构与遗传关系[J]. 中国农学通报, 2022, 38(5): 9-16. |
[2] | 刘小英, 吴碧君, 张游南, 黄飞龙, 刘国强. 基于ISSR标记的龙眼种质资源遗传多样性及亲缘关系分析[J]. 中国农学通报, 2022, 38(31): 60-65. |
[3] | 赵雅儒, 邳植, 刘蕊, 马语嫣, 吴则东. 不同甜菜单胚细胞质雄性不育系与保持系的遗传多样性分析[J]. 中国农学通报, 2022, 38(30): 35-40. |
[4] | 孙志广, 潘根, 陈庭木, 李景芳, 赵利君, 迟铭, 徐波, 邢运高, 刘金波, 刘晓敏, 葛高宁, 徐锦涛, 王宝祥, 徐大勇. 基于SNP标记的穞稻与栽培稻的遗传多样性分析及萌发耐淹性评价[J]. 中国农学通报, 2022, 38(30): 6-13. |
[5] | 李嘉炜, 陈潇, 常静静, 宋钊, 何裕志, 张白鸽. 可溶性盐浓度影响南瓜幼苗生长和荧光响应特性[J]. 中国农学通报, 2022, 38(18): 70-78. |
[6] | 张佳琦, 郭宗珊, 刘长华, 李荣田. 黑龙江省水稻品种的遗传多样性[J]. 中国农学通报, 2022, 38(17): 1-9. |
[7] | 梁燕, 韩传明, 周继磊, 孙超, 王翠香, 李春明, 王静, 闵旭峰, 公庆党, 孟晓烨, 杨绪强. 山东核桃良种SSR指纹图谱及分子身份证的构建——基于毛细管电泳分析[J]. 中国农学通报, 2022, 38(15): 113-121. |
[8] | 彭婵, 张新叶, 刘宗坤, 马林江, 陈慧玲. 石斛属植物SSR分子标记的研究进展[J]. 中国农学通报, 2022, 38(13): 36-40. |
[9] | 汪乔, 王祥锋, 郭玉峰, 王丽. 肺形侧耳菌株的遗传差异分析与农艺性状评价[J]. 中国农学通报, 2022, 38(10): 46-52. |
[10] | 向小华, 李媛, 张兴伟, 刘国祥, 杨菁, 赵文涛, 闻刚, 邵雨, 范静苑, 吕洪坤. 海南新收集烟草种质资源的鉴定与遗传多样性分析[J]. 中国农学通报, 2021, 37(7): 59-67. |
[11] | 王晓燕, 单红丽, 张荣跃, 仓晓燕, 王长秘, 李文凤, 尹炯, 罗志明, 黄应昆. 甘蔗抗褐锈病新基因抗感病池构建及SSR多态性引物筛选[J]. 中国农学通报, 2021, 37(6): 97-103. |
[12] | 张桂宁, 方弟安, 薛向平, 张敏莹, 冯晓婷, 杨雪军. 基于细胞色素B(Cyt b)基因对翘嘴鲌不同群体遗传多样性的分析[J]. 中国农学通报, 2021, 37(23): 118-124. |
[13] | 刘小英, 黄飞龙, 刘国强, 张游南. 枇杷ISSR分子标记的研究进展[J]. 中国农学通报, 2021, 37(21): 106-110. |
[14] | 徐明, 汪琼, 李冬玲, 郑玉红, 徐增莱. 基于ISSR标记的5个蓼蓝居群遗传多样性分析[J]. 中国农学通报, 2021, 37(21): 134-139. |
[15] | 李大命, 唐晟凯, 刘燕山, 谷先坤, 殷稼雯, 蒋琦辰, 张彤晴, 潘建林. 基于Cyt b基因的江苏省湖鲚种群遗传多样性和遗传结构分析[J]. 中国农学通报, 2021, 37(20): 144-151. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||