 
 中国农学通报 ›› 2020, Vol. 36 ›› Issue (24): 72-77.doi: 10.11924/j.issn.1000-6850.casb20190700387
收稿日期:2019-07-06
									
				
											修回日期:2019-11-04
									
				
									
				
											出版日期:2020-08-25
									
				
											发布日期:2020-08-20
									
			通讯作者:
					王庆贵
							作者简介:王蕾,女,1992年出生,黑龙江哈尔滨人,在读硕士,研究方向:气候变化背景下的土壤生态系统响应。通信地址:150080 黑龙江大学农业资源与环境学院,E-mail:基金资助:Received:2019-07-06
									
				
											Revised:2019-11-04
									
				
									
				
											Online:2020-08-25
									
				
											Published:2020-08-20
									
			Contact:
					Wang Qinggui  			     					     	
							摘要:
土壤酶是土壤生态系统物质和能量循环的重要影响因素,主要来自于微生物,微生物胞外酶活性通常可以用来表征土壤的肥力状况,土壤C-、N-、P-获取酶的活性比值(土壤生态酶化学计量比)是土壤微生物的养分获取和能量分配的指标。但有关生态酶化学计量学的相关论述还较少。本研究从氮沉降角度出发,综述了土壤生态酶对氮沉降的响应,充分探究了氮沉降背景下土壤生态酶(GLU、NAG、LAP、AP)以及氧化酶(PHO)的活性变化。同时,还讨论了温度、水分、pH、生态系统类型对C-、N-、P-获取酶活性的影响,以期为土壤生态酶的深入研究提供数据支持。
中图分类号:
王蕾, 王庆贵. 土壤生态酶化学计量特征的自然影响因素及其对氮沉降的响应[J]. 中国农学通报, 2020, 36(24): 72-77.
Wang Lei, Wang Qinggui. Soil Ecoenzymatic Stoichiometry Characteristics: Natural Influencing Factors and Their Responses to Nitrogen Deposition[J]. Chinese Agricultural Science Bulletin, 2020, 36(24): 72-77.
| [1] | Matson P, Lohse K A, Hall S J. The globalization of nitrogen deposition: consequences for terrestrial ecosystems[J]. AMBIO: A Journal of the Human Environment, 2002,31(2):113-120. | 
| [2] | Galloway J N, Cowling E B. Reactive nitrogen and the world: 200 years of change[J]. AMBIO:A Journal of the Human Environment, 2002,31(2):64-72. | 
| [3] | Luo L, Meng H, Gu J D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of environmental management, 2017,197:539-549. doi: 10.1016/j.jenvman.2017.04.023 URL pmid: 28419976 | 
| [4] | Elser J J, O'brien W J, Dobberfuhl D R, et al. The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats[J]. Journal of Evolutionary Biology, 2000,13(5):845-853. | 
| [5] | Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity[J]. Ecological Applications, 2004,14(4):1172-1177. | 
| [6] | Elser J J, Kyle M, Makino W, et al. Ecological stoichiometry in the microbial food web:a test of the light: nutrient hypojournal[J]. Aquatic Microbial Ecology, 2003,31(1):49-65. | 
| [7] | 左宜平, 张馨月, 曾辉, 等. 大兴安岭森林土壤胞外酶活力的时空动态及其对潜在碳矿化的影响[J]. 北京大学学报:自然科学版, 2018,54(6):1311-1324. | 
| [8] | Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology letters, 2008,11(11):1252-1264. doi: 10.1111/j.1461-0248.2008.01245.x URL pmid: 18823393 | 
| [9] | Fanin N, Moorhead D, Bertrand I. Eco-enzymatic stoichiometry and enzymatic vectors reveal differential C, N, P dynamics in decaying litter along a land-use gradient[J]. Biogeochemistry, 2016,129(1/2):21-36. | 
| [10] | Sinsabaugh R L, Follstad Shah J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012,43:313-343. | 
| [11] | Luo L, Gu J D. Nutrient limitation status in a subtropical mangrove ecosystem revealed by analysis of enzymatic stoichiometry and microbial abundance for sediment carbon cycling[J]. International Biodeterioration & Biodegradation, 2018,128:3-10. | 
| [12] | 周正虎, 王传宽. 生态系统演替过程中土壤与微生物碳氮磷化学计量关系的变化[J]. 植物生态学报, 2016,40(12):1257-1266. | 
| [13] | Allison S D, Vitousek P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biology and Biochemistry, 2005,37(5):937-944. | 
| [14] | Drake J E, Darby B A, Giasson M A, et al. Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest[J]. Biogeosciences, 2013,10(2):821-838. | 
| [15] | 刘红梅, 周广帆, 李洁, 等. 氮沉降对贝加尔针茅草原土壤酶活性的影响[J]. 生态环境学报, 2018,27(8):1387-1394. | 
| [16] | Johnson D, Leake J R, Lee J A, et al. Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands[J] Environmental Pollution, 1998,103(2/3):239-250. | 
| [17] | Zuo Y, Li J, Zeng H, et al. Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts[J]. Biogeochemistry, 2018,141(1):23-39. | 
| [18] | Sinsabaugh R L, Shah J J F, Hill B H, et al. Ecoenzymatic stoichiometry of stream sediments with comparison to terrestrial soils[J]. Biogeochemistry, 2012,111(1/3):455-467. | 
| [19] | Saraswati S, Parsons C T, Strack M. Access roads impact enzyme activities in boreal forested peatlands[J]. Science of the Total Environment, 2019,651:1405-1415. doi: 10.1016/j.scitotenv.2018.09.280 URL pmid: 30360271 | 
| [20] | Moscatelli M C, Lagomarsino A, Garzillo A M V, et al. β-Glucosidase kinetic parameters as indicators of soil quality under conventional and organic cropping systems applying two analytical approaches[J]. Ecological Indicators, 2012,13(1):322-327. doi: 10.1016/j.ecolind.2011.06.031 URL | 
| [21] | Stone M M, DeForest J L, Plante A F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory[J]. Soil Biology and Biochemistry, 2014,75:237-247. doi: 10.1016/j.soilbio.2014.04.017 URL | 
| [22] | Freeman C, Ostle N, Kang H. An enzymic'latch'on a global carbon store[J]. Nature, 2001,409(6817):149-150. doi: 10.1038/35051650 URL pmid: 11196627 | 
| [23] | Jing X, Chen X, Xiao W, et al. Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: Insights from two manipulative field experiments and a meta-analysis[J]. Pedobiologia, 2018,71:50-58. doi: 10.1016/j.pedobi.2018.10.001 URL | 
| [24] | Sinsabaugh R L, Hill B H, Shah J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009,462(7274):795. doi: 10.1038/nature08632 URL pmid: 20010687 | 
| [25] | Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004,101(30):11001-11006. doi: 10.1073/pnas.0403588101 URL | 
| [26] | Bell T H, Klironomos J N, Henry H A L. Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition[J]. Soil Science Society of America Journal, 2010,74(3):820-828. doi: 10.2136/sssaj2009.0036 URL | 
| [27] | Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013,58:216-234. doi: 10.1016/j.soilbio.2012.11.009 URL | 
| [28] | Xu Z, Yu G, Zhang X, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology and Biochemistry, 2017,104:152-163. doi: 10.1016/j.soilbio.2016.10.020 URL | 
| [29] | Xiao W, Chen X, Jing X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biology and Biochemistry, 2018,123:21-32. doi: 10.1016/j.soilbio.2018.05.001 URL | 
| [30] | Lu M, Zhou X, Yang Q, et al. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis[J]. Ecology, 2013,94(3):726-738. | 
| [31] | Henry H A L. Reprint of“Soil extracellular enzyme dynamics in a changing climate”[J]. Soil Biology and Biochemistry, 2013,56:53-59. doi: 10.1016/j.soilbio.2012.10.022 URL | 
| [32] | Zhou X, Chen C, Wang Y, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland[J]. Science of the Total Environment, 2013,444:552-558. doi: 10.1016/j.scitotenv.2012.12.023 URL pmid: 23298760 | 
| [33] | Puissant J, Cécillon L, Mills R T E, et al. Seasonal influence of climate manipulation on microbial community structure and function in mountain soils[J]. Soil Biology and Biochemistry, 2015,80:296-305. doi: 10.1016/j.soilbio.2014.10.013 URL | 
| [34] | Peng X, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China[J]. Soil Biology and Biochemistry, 2016,98:74-84. doi: 10.1016/j.soilbio.2016.04.008 URL | 
| [35] | Parvin S, Blagodatskaya E, Becker J N, et al. Depth rather than microrelief controls microbial biomass and kinetics of C-, N-, P-and S-cycle enzymes in peatland[J]. Geoderma, 2018,324:67-76. doi: 10.1016/j.geoderma.2018.03.006 URL | 
| [36] | 李焕茹, 朱莹, 田纪辉, 等. 碳氮添加对草地土壤有机碳氮磷含量及相关酶活性的影响[J]. 应用生态学报, 2018,29(8):2470-2476. | 
| [37] | 李瑞瑞, 卢艺, 王益明, 等. 氮添加对墨西哥柏人工林土壤碳氮磷化学计量特征及酶活性的影响[J]. 生态学杂志, 2019,38(2):384-393. | 
| [38] | 王文锋, 李春花, 黄绍文, 等. 不同施肥模式对设施菜田土壤酶活性的影响[J]. 应用生态学报, 2016,27(3):873-882. | 
| [39] | Zhang W, Zhu J, Zhou X, et al. Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield[J]. Agricultural water management, 2018,208:307-317. doi: 10.1016/j.agwat.2018.06.039 URL | 
| [40] | 范珍珍, 王鑫, 王超, 等. 整合分析氮磷添加对土壤酶活性的影响[J]. 应用生态学报, 2018,29(4):1266-1272. | 
| [41] | Jian S, Li J, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis[J]. Soil Biology and Biochemistry, 2016,101:32-43. doi: 10.1016/j.soilbio.2016.07.003 URL | 
| [42] | Bragazza L, Freeman C, Jones T, et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs[J]. Proceedings of the National Academy of Sciences, 2006,103(51):19386-19389. doi: 10.1073/pnas.0606629104 URL | 
| [43] | 张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征[J]. 生态学报, 2018,38(16):5828-5836. doi: 10.5846/stxb201708181492 URL | 
| [44] | Jiang Y, Lei Y, Qin W, et al. Revealing microbial processes and nutrient limitation in soil through ecoenzymatic stoichiometry and glomalin-related soil proteins in a retreating glacier forefield[J]. Geoderma, 2019,338:313-324. doi: 10.1016/j.geoderma.2018.12.023 URL | 
| [45] | Wang C, Lv Y, Liu X L, et al. Ecological effects of atmospheric nitrogen deposition on soil enzyme activity[J]. Journal of forestry research, 2013,24(1):109-114. doi: 10.1007/s11676-013-0330-4 URL | 
| [46] | 王晶苑, 张心昱, 温学发, 等. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013,33(5):1337-1346. doi: 10.5846/stxb201204300621 URL | 
| [47] | Han J, Jung J, Hyun S, et al. Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in Antarctic soils[J]. Journal of Microbiology, 2012,50(6):916-924. doi: 10.1007/s12275-012-2636-x URL | 
| [48] | 梁国鹏, 吴会军, 武雪萍, 等. 施氮量对夏玉米根际和非根际土壤酶活性及氮含量的影响[J]. 应用生态学报, 2016,27(6):1917-1924. | 
| [49] | 沈芳芳, 袁颖红, 樊后保, 等. 氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J]. 生态学报, 2012,32(2):517-525. | 
| [50] | Sinsabaugh R L, Turner B L, Talbot J M, et al. Stoichiometry of microbial carbon use efficiency in soils[J]. Ecological Monographs, 2016,86(2):172-189. doi: 10.1890/15-2110.1 URL | 
| [51] | Nannipieri P, Trasar Cepeda C, Dick R P. Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis[J]. Biology and fertility of soils, 2018,54(1):11-19. doi: 10.1007/s00374-017-1245-6 URL | 
| [1] | 赵佼娇, 哀建国. 杉木幼苗光合及叶绿素荧光特征对氮沉降的短期响应[J]. 中国农学通报, 2022, 38(29): 67-73. | 
| [2] | 李序进, 蔡立群, 李海亮. 兰州百合连作土壤碳氮磷化学计量特征及酶活性研究[J]. 中国农学通报, 2021, 37(6): 82-88. | 
| [3] | 高文礼, 再努尔·吐尔逊, 桑钰, 马晓东. 丛枝菌根真菌对植物氮素吸收作用的研究进展[J]. 中国农学通报, 2021, 37(27): 53-58. | 
| [4] | 程智超, 王文浩, 李梦莎, 隋心, 尹伟平, 李国富. 基于CiteSpace的氮沉降知识图谱计量分析[J]. 中国农学通报, 2021, 37(1): 158-164. | 
| [5] | 徐萌, 王庆贵, 闫国永, 邢亚娟. 增温和施氮对小兴安岭叶凋落物分解的影响[J]. 中国农学通报, 2020, 36(14): 46-53. | 
| [6] | 毛晋花,邢亚娟,王庆贵. 外源碳氮对植物生态化学计量特征的影响研究进展[J]. 中国农学通报, 2018, 34(5): 54-60. | 
| [7] | 王美溪,刘珂艺,邢亚娟. 气候变化背景下土壤微生物与植物物种多样性关联分析[J]. 中国农学通报, 2018, 34(20): 111-117. | 
| [8] | 罗维,邢亚娟,王庆贵. 氮沉降对北方森林土壤氮收支的影响研究进展[J]. 中国农学通报, 2018, 34(12): 98-107. | 
| [9] | 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应[J]. 中国农学通报, 2017, 33(30): 84-90. | 
| [10] | 毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展[J]. 中国农学通报, 2017, 33(29): 42-48. | 
| [11] | 罗维,黄雅曦,国微,王庆贵. 氮沉降对北方森林土壤微生物的影响研究进展[J]. 中国农学通报, 2017, 33(28): 111-116. | 
| [12] | 郭 亮,王庆贵,邢亚娟. 森林生态系统土壤碳库对氮沉降的响应研究进展[J]. 中国农学通报, 2016, 32(32): 81-87. | 
| [13] | 董雄德,邢亚娟,闫国永,王庆贵. 不同生态系统凋落物分解对氮沉降的响应综述[J]. 中国农学通报, 2016, 32(22): 140-150. | 
| [14] | 闫国永,邢亚娟,王晓春,韩士杰,王庆贵. 氮沉降对细根动态和形态特征的影响研究进展[J]. 中国农学通报, 2016, 32(15): 79-85. | 
| [15] | 刘作云,杨 宁. 紫色土丘陵坡地不同恢复阶段土壤生态化学计量特征[J]. 中国农学通报, 2015, 31(18): 163-167. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
