 
 中国农学通报 ›› 2021, Vol. 37 ›› Issue (17): 87-93.doi: 10.11924/j.issn.1000-6850.casb2020-0500
所属专题: 资源与环境
收稿日期:2020-09-25
									
				
											修回日期:2021-01-29
									
				
									
				
											出版日期:2021-06-15
									
				
											发布日期:2021-06-29
									
			通讯作者:
					佟海滨
							作者简介:吴进兰,女,1997年出生,广东人,在读硕士,研究方向:环境毒理学、药理学研究。通信地址:325000 浙江省温州市温州大学生命与环境科学学院,E-mail:基金资助:
        
               		Wu Jinlan( ), Lu Chenying, Wu Mingjiang, Tong Haibin(
), Lu Chenying, Wu Mingjiang, Tong Haibin( )
)
			  
			
			
			
                
        
    
Received:2020-09-25
									
				
											Revised:2021-01-29
									
				
									
				
											Online:2021-06-15
									
				
											Published:2021-06-29
									
			Contact:
					Tong Haibin  			     					     	
							摘要:
经济发展以及人类活动加速造成生态环境破坏,工业及生活污水的过度排放使得江河、海水的污染加剧,对人类健康的危害也日益加深。果蝇作为一种经典的模式生物,与其它动物模型相比,具有饲养成本低、生命周期短、繁殖能力强、遗传物质简单、突变表型多且易于观察等诸多优点,是一种应用广泛并适合于研究人类疾病和毒理学的模式生物。简述了水环境中挥发性有机化合物、氟喹诺酮类药物、重金属、农药和微生物毒素等污染物对果蝇的毒理学研究,提出了果蝇作为经典的模式生物在研究毒理学机制以及筛选抗毒药物的优势,并对未来的发展趋势做了展望。
中图分类号:
吴进兰, 卢晨瑛, 吴明江, 佟海滨. 模式生物果蝇在水环境污染物毒理学中的应用及研究进展[J]. 中国农学通报, 2021, 37(17): 87-93.
Wu Jinlan, Lu Chenying, Wu Mingjiang, Tong Haibin. The Application of Model Organisms Drosophila melanogaster to the Toxicology of Water Environment Pollutants: Research Progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 87-93.
| [1] | Anet A, Olakkaran S, Kizhakke P A. et al. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster[J]. Journal of Hazardous Materials, 2019,370:42-53. doi: 10.1016/j.jhazmat.2018.07.050 URL | 
| [2] | 张金平.果蝇: 小昆虫的大成就[J]. 农药市场信息, 2019(14):67-68. | 
| [3] | Cansaran-duman D, Atakol O, Aras S. Assessment of air pollution genotoxicity by RAPD in evernia prunastri L. Ach. from around iron-steel factory in Karabük, Turkey[J]. Journal of Environmental Sciences, 2011,23(7):1171-1178. doi: 10.1016/S1001-0742(10)60505-0 URL | 
| [4] | Oldham S. Obesity and nutrient sensing TOR pathway in flies and vertebrates: Functional conservation of genetic mechanisms[J]. Trends in Endocrinology and Metabolism, 2011,22(2):45-52. doi: 10.1016/j.tem.2010.11.002 URL | 
| [5] | Yamaguchi M, Yoshida H. Drosophila as a model organism[J]. Advances in Experimental Medicine and Biology, 2018,1076:1-10. | 
| [6] | Kumar J P. The fly eye: Through the looking glass[J]. Developmental Dynamics, 2018,247(1):111-123. doi: 10.1002/dvdy.v247.1 URL | 
| [7] | Ramírez N, Cuadras A, Rovira E, et al. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site[J]. Environment International, 2012,39(1):200-209. doi: 10.1016/j.envint.2011.11.002 URL | 
| [8] | Wang F, Li C, Liu W, et al. Potential mechanisms of neurobehavioral disturbances in mice caused by sub-chronic exposure to low-dose VOCs[J]. Inhalation Toxicology, 2014,26(4):250-258. doi: 10.3109/08958378.2014.882447 pmid: 24568580 | 
| [9] | Wang F, Li C, Liu W, et al. Effect of exposure to volatile organic compounds (VOCs) on airway inflammatory response in mice[J]. The Journal of Toxicological Sciences, 2012,37(4):739-748. doi: 10.2131/jts.37.739 URL | 
| [10] | JImi S, Uchiyama M, Takaki A, et al. Mechanisms of cell death induced by cadmium and arsenic[J]. Annals of the New York Academy of Sciences, 2004,1011:325-331. doi: 10.1196/annals.1293.032 URL | 
| [11] | Piper M D, Partridge L. Protocols to study aging in drosophila[J]. Methods in Molecular Biology, 2016,1478:291-320. | 
| [12] | Doganlar O, Doganlar ZB, Tabakcioglu K. Effects of permissible maximum-contamination levels of VOC mixture in water on total DNA, antioxidant gene expression, and sequences of ribosomal DNA of Drosophila melanogaster[J]. Environmental Science and Pollution Research International, 2015,22(20):15610-15620. doi: 10.1007/s11356-015-4741-y pmid: 26018283 | 
| [13] | Mahendra P S, Ram K R, Mishra M, et al. Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: Alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers[J]. Chemosphere, 2010,79(5):577-587. doi: 10.1016/j.chemosphere.2010.01.054 pmid: 20188393 | 
| [14] | Singh M P, Mishra M, Sharma A, et al. Genotoxicity and apoptosis in Drosophila melanogaster exposed to benzene, toluene and xylene: Attenuation by quercetin and curcumin[J]. Toxicology and Applied Pharmacology, 2011,253(1):14-30. doi: 10.1016/j.taap.2011.03.006 URL | 
| [15] | Ordaz J D, Damayanti N P, Irudayaraj J M K. Toxicological effects of trichloroethylene exposure on immune disorders[J]. Immunopharmacol Immunotoxicol, 2017,39(6):305-317. doi: 10.1080/08923973.2017.1364262 URL | 
| [16] | Luo Y S, Hsieh N H, Soldatow V Y, et al. Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains[J]. Toxicology, 2018,409:33-43. doi: 10.1016/j.tox.2018.07.012 URL | 
| [17] | Abolaji A O, Babalola O V, Adegoke A K, et al. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster[J]. Environmental Toxicology and Pharmacology, 2017,55:202-207. doi: 10.1016/j.etap.2017.08.038 URL | 
| [18] | Zhang R L, Zhang R J, Zou S C, et al. Occurrence, distribution and ecological risks of fluoroquinolone antibiotics in the Dongjiang river and the Beijiang river, Pearl River Delta, south China[J]. Bulletin of Environmental Contamination and Toxicology, 2017,99(1):46-53. doi: 10.1007/s00128-017-2107-5 URL | 
| [19] | Zivna D, Plhalova L, Chromcova L, et al. The effects of ciprofloxacin on early life stages of common carp (Cyprinus carpio)[J]. Environmental Toxicology and Chemistry, 2016,35(7):1733-1740. doi: 10.1002/etc.3317 pmid: 26632160 | 
| [20] | Bennett A C, Bennett C L, Witherspoon B J, et al. An evaluation of reports of ciprofloxacin, levofloxacin, and moxifloxacin-association neuropsychiatric toxicities, long-term disability, and aortic aneurysms/dissections disseminated by the Food and Drug Administration and the European Medicines Agency[J]. Expert Opinion on Drug Safety, 2019,18(11):1055-1063. doi: 10.1080/14740338.2019.1665022 pmid: 31500468 | 
| [21] | Aslan N, Büyükgüzel E, Büyükgüzel K. Oxidative effects of gemifloxacin on some bological traits of Drosophila melanogaster (Diptera: Drosophilidae)[J]. Environmental Entomology, 2019,48(3):667-673. doi: 10.1093/ee/nvz039 URL | 
| [22] | Liu J, Li X, Wang X. Toxicological effects of ciprofloxacin exposure to Drosophila melanogaster[J]. Chemosphere, 2019,237:124542. doi: 10.1016/j.chemosphere.2019.124542 URL | 
| [23] | Bidell M R, Lodise T P. Fluoroquinolone-associated tendinopathy: Does levofloxacin pose the greatest risk?[J]. Pharmacotherapy, 2016,36(6):679-693. doi: 10.1002/phar.2016.36.issue-6 URL | 
| [24] | Al-momani F A, Massadeh A M. Effect of different heavy-metal concentrations on Drosophila melanogaster larval growth and development[J]. Biological Trace Element Research, 2005,108(1-3):271-277. doi: 10.1385/BTER:108:1-3 URL | 
| [25] | Nguyen A H, Altomare L E, Mcelwain M C. Decreased accumulation of cadmium in Drosophila selected for resistance suggests a mechanism independent of metallothionein[J]. Biological Trace Element Research, 2014,160(2):245-249. doi: 10.1007/s12011-014-0037-1 URL | 
| [26] | Giaginis C, Gatzidou E, Theocharis S. DNA repair systems as targets of cadmium toxicity[J]. Toxicology and Applied Pharmacology, 2006,213(3):282-290. doi: 10.1016/j.taap.2006.03.008 URL | 
| [27] | Kopera E, Schwerdtle T, Hartwig A, et al. Co (II) and Cd(II) substitute for Zn(II) in the zinc finger derived from the DNA repair protein XPA, demonstrating a variety of potential mechanisms of toxicity[J]. Chemical Research in Toxicology, 2004,17(11):1452-1458. doi: 10.1021/tx049842s URL | 
| [28] | Hu X Y, Fu W L, Yang X G, et al. Effects of cadmium on fecundity and defence ability of Drosophila melanogaster[J]. Ecotoxicology and Environmental Safety, 2019,171:871-877. doi: 10.1016/j.ecoenv.2019.01.029 URL | 
| [29] | Bixler A, Schnee F B. The effects of the timing of exposure to cadmium on the oviposition behavior of Drosophila melanogaster[J]. Biometals, 2018,31(6):1075-1080. doi: 10.1007/s10534-018-0148-9 URL | 
| [30] | Abdulrazzaq A M, Mohd H, Wahid H A, et al. The detrimental effects of lead on human and animal health[J]. Veterinary World, 2016,9(6):660-671. doi: 10.14202/vetworld.2016.660-671 pmid: 27397992 | 
| [31] | Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology, 2014,7(2):60-72. doi: 10.2478/intox-2014-0009 URL | 
| [32] | Nanda K P, Kumari C, Dubey M, et al. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster[J]. Chemosphere, 2019,236:124349. doi: 10.1016/j.chemosphere.2019.124349 URL | 
| [33] | Prince L M, Aschner M, Bowman A B. Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury[J]. BBA - General Subjects, 2019,1863(12):129300. doi: 10.1016/j.bbagen.2019.02.002 URL | 
| [34] | Leão M B, Wagner C, Lugokenski T H, et al. Methylmercury and diphenyl diselenide interactions in Drosophila melanogaster: effects on development, behavior and Hg levels[J]. Environmental Science and Pollution Research, 2018,25(22):21568-21576. doi: 10.1007/s11356-018-2293-7 URL | 
| [35] | Liu Y, Ji J, Zhang W, et al. Selenium modulated gut flora and promoted decomposition of methylmercury in methylmercury-poisoned rats[J]. Ecotoxicology and Environmental Safety, 2019,185:109720. doi: 10.1016/j.ecoenv.2019.109720 URL | 
| [36] | Dabool L, Juravlev L, Kurant E, et al. Modeling parkinson's disease in adult Drosophila[J]. Journal of Neuroscience Methods, 2019,311:89-94. doi: S0165-0270(18)30326-1 pmid: 30336223 | 
| [37] | Cutler T, Sarkar A, Moran M, et al. Drosophila eye model to study neuroprotective role of CREB binding protein (CBP) in alzheimer's disease[J]. PLoS One, 2015,10(9):e0137691. doi: 10.1371/journal.pone.0137691 URL | 
| [38] | Dubowy C, Sehgal A. Circadian rhythms and sleep in Drosophila melanogaster[J]. Genetics, 2017,205(4):1373-1397. doi: 10.1534/genetics.115.185157 URL | 
| [39] | Donlea J M. Roles for sleep in memory: insights from the fly[J]. Current Opinion in Neurobiology, 2019,54:120-126. doi: 10.1016/j.conb.2018.10.006 URL | 
| [40] | Cappelletti S, Piacentino D, Fineschi V, et al. Mercuric chloride poisoning: symptoms, analysis, therapies, and autoptic findings. A review of the literature[J]. Critical Reviews in Toxicology, 2019,49(4):329-341. doi: 10.1080/10408444.2019.1621262 pmid: 31433682 | 
| [41] | Capo F, Wilson A, Di C F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host-Microbial Interactions in Humans[J]. Microorganisms, 2019,7(9):336. doi: 10.3390/microorganisms7090336 URL | 
| [42] | Chen Z, Wu X C, Luo H J, et al. Acute exposure of mercury chloride stimulates the tissue regeneration program and reactive oxygen species production in the Drosophila midgut[J]. Environmental Toxicology and Pharmacology, 2016,41:32-38. doi: 10.1016/j.etap.2015.11.009 pmid: 26650796 | 
| [43] | Cicatelli A, Castiglione S. A step forward in tree physiological research on soil copper contamination[J]. Tree Physiology, 2016,36(4):403-406. doi: 10.1093/treephys/tpw014 pmid: 27009117 | 
| [44] | Cruces S A, Rodríguez A I, Herbello H P, et al. Copper ncreases brain oxidative stress and enhances the ability of 6-hydroxydopamine to cause dopaminergic degeneration in a rat model of parkinson's disease. Mol Neurobiol[J]. Molecular neurobiology, 2019,56(4):2845-2854. doi: 10.1007/s12035-018-1274-7 URL | 
| [45] | Brewer G J. Avoiding Alzheimer's disease: The important causative role of divalent copper ingestion[J]. Experimental Biology and Medicine, 2019,244(2):114-119. doi: 10.1177/1535370219827907 URL | 
| [46] | Balamurugan K, Egli D, Hua H, et al. Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance[J]. The EMBO journal, 2007,26(4):1035-1044. doi: 10.1038/sj.emboj.7601543 URL | 
| [47] | Klimaczewski C V, Ecker A, Piccoli B, et al. Peumus boldus attenuates copper-induced toxicity in Drosophila melanogaster[J]. Biomedicine & Pharmacotherapy, 2018,97:1-8. doi: 10.1016/j.biopha.2017.09.130 URL | 
| [48] | Zamberlan D C, Halmenschelager P T, Silva L F O, et al. Copper decreases associative learning and memory in Drosophila melanogaster[J]. The Science of the Total Environment, 2020,710:135306. doi: S0048-9697(19)35298-2 pmid: 31926406 | 
| [49] | Hosmer A J, Schneider S Z, Anderson J C, et al. Fish short-term reproduction assay with atrazine and the Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2017,36(9):2327-2334. doi: 10.1002/etc.3769 pmid: 28198566 | 
| [50] | Delcorso M C, Matheus V A, Arana S. Acute toxicity of commercial atrazine in Piaractus mesopotamicus: Histopathological, ultrastructural, molecular, and genotoxic evaluation[J]. Veterinary World, 2017,10(9):1008-1019. doi: 10.14202/vetworld. URL | 
| [51] | Lin Z, Roede J R, He C, et al. Short-term oral atrazine exposure alters the plasma metabolome of male C57BL/6 mice and disrupts α-linolenate, tryptophan, tyrosine and other major metabolic pathways[J]. Toxicology, 2014,326:130-141. doi: 10.1016/j.tox.2014.11.001 URL | 
| [52] | Karrow N A, Mccay J A, Brown R D, et al. Oral exposure to atrazine modulates cell-mediated immune function and decreases host resistance to the B16F10 tumor model in female B6C3F1 mice[J]. Toxicology, 2005,209(1):15-28. pmid: 15725510 | 
| [53] | Figueira F H, Aguiar L M, Rosa C E. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster[J]. Comparative Biochemistry and Physiology, Part C, 2017,191:78-85. | 
| [54] | Figueira F H, Quadros O N, Aguiar L M, et al. Exposure to atrazine alters behaviour and disrupts the dopaminergic system in Drosophila melanogaster[J]. Comparative Biochemistry and Physiology, Part C, 2017,202:94-102. | 
| [55] | Gao B, Bian X, Mahbub R, et al. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions[J]. Environment Health Perspect, 2017,125(2):198-206. doi: 10.1289/EHP202 URL | 
| [56] | Chaudhuri A, Johnson R, Rakshit K, et al. Exposure to Spectracide® causes behavioral deficits in Drosophila melanogaster: Insights from locomotor analysis and molecular modeling[J]. Chemosphere, 2020,248:37-48. | 
| [57] | Aguiar L M, Figueira F H, Gottschalk MS, et al. Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster[J]. Comparative Biochemistry and Physiology, Part C, 2016,185:94-101. | 
| [58] | Li X Q, Liu J, Wang X. Exploring the multilevel hazards of thiamethoxam using Drosophila melanogaster[J]. Journal of Hazardous Materials, 2020,384:121419. doi: 10.1016/j.jhazmat.2019.121419 URL | 
| [59] | Raszl S M, Froelich B A, Vieira C R, et al. Vibrio parahaemolyticus and Vibrio vulnificus in South America: water, seafood and human infections[J]. Journal of Applied Microbiology, 2016,121(5):1201-1222. doi: 10.1111/jam.13246 pmid: 27459915 | 
| [60] | Li L Z, Meng H, Gu D, et al. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis[J]. Microbiological Research, 2019,222:43-51. doi: 10.1016/j.micres.2019.03.003 URL | 
| [61] | Royet J. Epithelial homeostasis and the underlying molecular mechanisms in the gut of the insect model Drosophila melanogaster[J]. Cellular and Molecular Life Sciences, 2011,68(22):3651-3660. doi: 10.1007/s00018-011-0828-x URL | 
| [62] | Luo L, Matthews J D, Robinson BS, et al. Vibrio parahaemolyticus VopA is a potent inhibitor of cell migration and apoptosis in the intestinal epithelium of Drosophila melanogaster[J]. Infection and Immunity, 2019,87(3):e00669-18. | 
| [1] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. | 
| [2] | 鲍广灵, 陶荣浩, 杨庆波, 胡含秀, 李丁, 马友华. 微生物修复农田土壤重金属污染技术研究进展[J]. 中国农学通报, 2022, 38(6): 69-74. | 
| [3] | 孙养存, 尹紫良, 葛菁萍. 土壤中重金属污染物的来源及治理方式[J]. 中国农学通报, 2022, 38(6): 75-79. | 
| [4] | 马彪, 刘学录, 年丽丽, 李亮亮, 杨莹博. 2011—2020年土壤修复领域研究态势的文献计量分析[J]. 中国农学通报, 2022, 38(5): 143-151. | 
| [5] | 张博, 石峰, 宋福强. AMF复合菌剂对寒地水稻光合作用和生长效应的影响[J]. 中国农学通报, 2022, 38(33): 15-22. | 
| [6] | 黄亚捷, 崔艳智, 贾小梅, 于奇. “十四五”期间宁夏畜禽养殖污染趋势与污染防治对策研究[J]. 中国农学通报, 2022, 38(32): 78-85. | 
| [7] | 高琳琳, 王陈丝丝, 张宁, 胡含秀, 马友华. 石灰配施有机物料对稻麦轮作土壤镉影响研究[J]. 中国农学通报, 2022, 38(3): 81-86. | 
| [8] | 郑盛华, 陈尚洪, 陈红琳, 杨泽鹏, 敖玉琴, 刘定辉. 川西北高原农业面源污染分析与防控技术对策——以阿坝藏族羌族自治州为例[J]. 中国农学通报, 2022, 38(27): 60-65. | 
| [9] | 管宏友. 土壤污染防治研究的文献计量分析及可视化表达[J]. 中国农学通报, 2022, 38(26): 133-138. | 
| [10] | 张奇, 刘海涛, 田静, 姚莉, 王宏, 林超文. 耕作方式对成都平原稻麦轮作系统吸收累积镉的影响[J]. 中国农学通报, 2022, 38(19): 109-113. | 
| [11] | 郑盛华, 陈尚洪, 陈红琳, 万柯均, 敖玉琴, 刘定辉. 川东丘陵区生态循环农业发展路径研究——以四川省蓬溪县种养废弃物资源化利用模式为例[J]. 中国农学通报, 2022, 38(18): 95-99. | 
| [12] | 郭佳, 靳少非, 王库. 城市快速扩张背景下城乡交错区土壤重金属的空间分布特征及影响因素分析[J]. 中国农学通报, 2022, 38(17): 103-109. | 
| [13] | 王志强, 宋胜帮, 肖涛, 闻熠, 曾明, 李鋆. 九江市农业农村水污染的现状、防治困境及对策分析[J]. 中国农学通报, 2022, 38(17): 148-155. | 
| [14] | 张倩, 张国威, 商侃侃. 不同强化处理措施对铜污染土壤微生物多样性的影响[J]. 中国农学通报, 2022, 38(14): 96-103. | 
| [15] | 宋芸, 樊平, 王敏, 李红梅, 曹志红, 韩伟. 山东滨州地膜残留现状、危害及防治对策[J]. 中国农学通报, 2022, 38(14): 104-109. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||