中国农学通报 ›› 2021, Vol. 37 ›› Issue (18): 85-94.doi: 10.11924/j.issn.1000-6850.casb2020-0738
所属专题: 生物技术
收稿日期:
2020-12-02
修回日期:
2021-03-03
出版日期:
2021-06-25
发布日期:
2021-07-13
通讯作者:
宋兴舜,孟威
作者简介:
姜雪,女,1995 年出生,吉林松原人,在读硕士研究生,研究方向:植物分子生物学。通信地址:150040 哈尔滨市香坊区和兴路26 号,东北林业大学生命科学学院,E-mail: 基金资助:
Jiang Xue(), Song Xingshun(
), Meng Wei(
)
Received:
2020-12-02
Revised:
2021-03-03
Online:
2021-06-25
Published:
2021-07-13
Contact:
Song Xingshun,Meng Wei
摘要:
脂类是生物体内的最重要物质之一。脂质运输是脂质代谢过程中重要环节。植物中参与脂质运输的蛋白质家族主要有三类:脂质转移蛋白(lipid transfer proteins, LTPs)、三磷酸腺苷结合盒转运蛋白(ATP- binding cassette transporter, ABC transporter) 和酰基辅酶A 结合蛋白(acyl- coenzyme A- binding proteins, ACBPs)。由于具有不同的亚细胞定位,这些脂类转运蛋白在脂类代谢过程中发挥着不同的作用。近期研究显示,除了保守的脂质转运功能,这三类脂类转运蛋白还不同程度地参与生长发育和胁迫响应。为进一步深入了解脂质运输在植物生长发育和胁迫响应过程中的作用机制,总结了以上三类脂类转运蛋白家族的结构、分类和不同植物中的亚细胞定位,并着重对脂质运输在生长发育和胁迫响应中的功能进行了整理。尽管大量证据显示这三类脂类转运蛋白在生长发育和胁迫响应中发挥作用,但是,只有少数研究说明脂质运输在其中发挥重要作用,而这些研究多集中在对ACBPs家族的研究中。
中图分类号:
姜雪, 宋兴舜, 孟威. 三类植物脂类转运蛋白家族研究进展[J]. 中国农学通报, 2021, 37(18): 85-94.
Jiang Xue, Song Xingshun, Meng Wei. Research Progress of Three Lipid Transporter Families in Plants[J]. Chinese Agricultural Science Bulletin, 2021, 37(18): 85-94.
[10] |
Gou L, Yang H B, Zhang X Y, et al. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis[J]. Journal of Experimental Botany, 2013,64(6):1755-1767.
doi: 10.1093/jxb/ert040 URL |
[11] | Da Silva F C V, Costa E P, Gomes V M, et al. Inhibition mechanism of human salivary alpha-amylase by lipid transfer protein from Vigna unguiculata[J]. Computational Biology and Chemistry, 2020,85(1):1-8. |
[12] | Rueckert D G, Schmidt K. Lipid transfer proteins[J]. Chemistry & Physics of Lipids, 1990,56(1):1-20. |
[13] | Kader J C. Lipid-transfer proteins in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biologyl, 1996,47(1):627-654. |
[14] |
Carvalho A O, Gomes V M. Role of plant lipid transfer proteins in plant cell physiology-a concise review[J]. Peptides, 2007,28(5):1144-1153.
doi: 10.1016/j.peptides.2007.03.004 URL |
[15] |
Liu F, Zhang X B, Lu C M, et al. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis[J]. Journal of Experimental Botany, 2015,66(19):5663-5681.
doi: 10.1093/jxb/erv313 URL |
[16] | Bard G C V, Zottich U, Souza T A M, et al. Purification, biochemical characterization, and antimicrobial activity of a new lipid transfer protein from Coffea canephora seeds[J]. Genetics & Molecular Research Gmr, 2016,15(4):1-16. |
[17] | Pyee J, Yu H S, Kolattukudy P E. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves[J]. Archives of Biochemistry & Biophysics, 1994,311(2):460-468. |
[18] |
Wu G H, Robertson A J, Liu X J, et al. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin and sphingosine in bromegrass (Bromus inermis)[J]. Journal of Plant Physiology, 2004,161(4):449-458.
doi: 10.1078/0176-1617-01259 URL |
[19] | Sterk P, Booij H, Schellekens G A, et al. Cell-specific expression of the carrot EP2 lipid transfer protein gene[J]. The Plant Cell, 1991,3(9):907-921. |
[20] |
Coutos-Thevenot P, Jouenne T, Maes O, et al. Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins[J]. European Journal of Biochemistry, 1993,217(3):885-889.
pmid: 8223644 |
[21] | Blanckaert A, Belingheri L, Sautiere P E, et al. 9-kDa acidic and basic nsLTP-like proteins are secreted in the culture-medium conditioned by somatic embryogenesis in Cichorium[J]. Plant Physiology & Biochemistry, 2002,40(4):339-345. |
[22] |
Debono A, Yeats T H, Rose J K C, et al. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface[J]. Plant Cell, 2009,21(4):1230-1238.
doi: 10.1105/tpc.108.064451 pmid: 19366900 |
[23] | Carvalho A D O, Teodoro C E D S, Cunha M D, et al. Intracellular localization of a lipid transfer protein in Vigna unguiculata seeds[J]. Physiologia Plantarum, 2004,122(3):323-336. |
[24] |
Pagnussat L A, Lombardo C, Regente M, et al. Unexpected localization of a lipid transfer protein in germinating sunflower seeds[J]. Journal of Plant Physiology, 2009,166(8):797-806.
doi: 10.1016/j.jplph.2008.11.005 pmid: 19117640 |
[25] |
Chae K, Kieslich C A, Morikis D, et al. A gain-of-function mutation of Arabidopsis lipid transfer protein 5 disturbs pollen tube tip growth and fertilization[J]. Plant Cell, 2009,21(12):3902-3914.
doi: 10.1105/tpc.109.070854 URL |
[26] |
Chae K, Gonong B J, Kim S C, et al. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction[J]. Journal of Experimental Botany, 2010,61(15):4277-4290.
doi: 10.1093/jxb/erq228 URL |
[27] |
Nieuwland J, Feron R, Huisman B A H, et al. Lipid transfer proteins enhance cell wall extension in Tobacco[J]. Plant Cell, 2005,17(7):2009-2019.
pmid: 15937228 |
[28] |
Pii Y, Molesini B, Masiero S, et al. The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction[J]. BMC Plant Biology, 2013,12(7):1-13.
doi: 10.1186/1471-2229-12-1 URL |
[29] |
Kirubakaran S I, Begum S M, Ulaganathan K, et al. Characterization of a new antifungal lipid transfer protein from wheat[J]. Plant Physiology Biochemistry, 2008,46(10):918-927.
doi: 10.1016/j.plaphy.2008.05.007 URL |
[1] | Li-Beisson Y, Nakamura Y, Harwood J. Lipids: From chemical structures, biosynjournal, and analyses to industrial applications[J]. Sub-cellular Biochemistry, 2016,86(1):1-18. |
[2] | Li-Beisson Y, Shorrosh B, Beisson F, et al. Acyl-lipid metabolism[J]. The Arabidopsis Book, 2010,11(11):1-70. |
[30] |
Guo C K, Ge X C, Ma H. The rice OsDIL gene plays a role in drought tolerance at vegetative and reproductive stages[J]. Plant Molecular Biology, 2013,82(3):239-253.
doi: 10.1007/s11103-013-0057-9 URL |
[31] | Edstam M M, Laurila M, Höglund A, et al. Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens[J]. Plant Physiology & Biochemistry, 2014,75(1):55-69. |
[3] |
Toulmay A, Prinz W A. Lipid transfer and signaling at organelle contact sites: the tip of the iceberg[J]. Current Opinion in Cell Biology, 2011,23(4):458-463.
doi: 10.1016/j.ceb.2011.04.006 URL |
[4] |
Du Z Y, Arias T, Meng W, et al. Plant acyl-CoA-binding proteins: an emerging family involved in plant development and stress responses[J]. Progress in Lipid Research, 2016,63(1):165-181.
doi: 10.1016/j.plipres.2016.06.002 URL |
[32] |
Hwang J U, Song W Y, Hong D, et al. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle[J]. Molecular Plant, 2016,9(3):338-355.
doi: 10.1016/j.molp.2016.02.003 URL |
[33] | Wilkens S. Structure and mechanism of ABC transporters[J]. F1000prime Reports, 2015,7(1):14-14. |
[5] | Lung S C, Chye M L. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism[J]. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2016,1861(9):1409-1421. |
[6] | Kader J C. Proteins and the intracellular exchange of lipids. I. stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber[J]. Biochimica Et Biophysica Acta, 1975,380(1):31-44. |
[34] |
Verrier P J, Bird D, Buria B, et al. Plant ABC proteins-a unified nomenclature and updated inventory[J]. Trends in Plant Science, 2008,13(4):151-159.
doi: 10.1016/j.tplants.2008.02.001 URL |
[35] | Beek J T, Guskov A, Slotboom D J. Structural diversity of ABC transporters[J]. The Journal of General Physiology, 2014,43(4):419-435. |
[7] |
Diza M S, Carvalhoa A O, Ribeiroa S F F, et al. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties[J]. Physiologia Plantarum, 2011,142(3):233-246.
doi: 10.1111/ppl.2011.142.issue-3 URL |
[8] | Qiao P F, Bourgault R, Mohammadi M, et al. A maize LIPID TRANSFER PROTEIN may bridge the gap between PHYTOCHROME-mediated light signaling and cuticle biosynjournal[J]. Plant Signaling & Behavior, 2020,15(9):2-4. |
[36] |
Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily[J]. Journal of Lipid Research, 2001,42(7):1007-1017.
doi: 10.1016/S0022-2275(20)31588-1 URL |
[37] |
Rea P A. Plant ATP-binding cassette transporters[J]. Annual Review of Plant Biology, 2007,58(1):347-375.
doi: 10.1146/annurev.arplant.57.032905.105406 URL |
[9] |
Kouidri A, Baumann U, Okada T, et al. Wheat TaMs1 is a glycosylphosphatidylinositol-anchored lipid transfer protein necessary for pollen development[J]. BMC Plant Biology, 2018,18(1):1-13.
doi: 10.1186/s12870-017-1213-1 URL |
[38] |
Locher K P. Mechanistic diversity in ATP-binding cassette (ABC) transporters[J]. Nature Structural & Molecular Biology, 2016,23(6):487-493.
doi: 10.1038/nsmb.3216 URL |
[39] |
Lee M, Choi Y, Burla B, et al. The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2[J]. Nature Cell Biology, 2008,10(10):1217-1223.
doi: 10.1038/ncb1782 URL |
[40] | Fan J L, Zhai Z Y, Yan C S, et al. Arabidopsis trigalactosyldiacylglycerol 5 interacts with TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to plastids[J]. Plant Cell, 2015,27(10):2941-2955. |
[41] |
Zolman B K, Silva I D, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation[J]. Plant Physiology, 2001,127(3):1266-1278.
doi: 10.1104/pp.010550 URL |
[42] |
Liu G, Sanchez-Fernandez R, Li Z S, et al. Enhanced multispecificity of Arabidopsis vacuolar multidrug resistance-associated protein-type ATP-binding cassette transporter, AtMRP2[J]. Journal of Biological Chemistry, 2001,276(12):8648-8656.
doi: 10.1074/jbc.M009690200 URL |
[43] | Kim S, Yamaoka Y, Ono H, et al. AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum[J]. Proceedings of The National Academy of Sciences of The United States of America, 2013,110(2):773-778. |
[44] |
Graham I A. Seed storage oil mobilization[J]. Annual Review of Plant Biology, 2008,59:115-142.
doi: 10.1146/annurev.arplant.59.032607.092938 pmid: 18444898 |
[45] |
Mendiondo G M, Medhurst A, Roermund C W V, et al. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation[J]. Journal of Experimental Botany, 2014,65(17):4833-4847.
doi: 10.1093/jxb/eru243 URL |
[46] |
Panikashvili D, Savaldi-Goldstein S, Mandel T, et al. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion[J]. Plant Physiology, 2007,145(4):1345-1360.
doi: 10.1104/pp.107.105676 URL |
[47] |
Pighin J A, Zheng H Q, Balakshin L J, et al. Plant cuticular lipid export requires an ABC transporter[J]. Science, 2004,306(5696):702-703.
doi: 10.1126/science.1102331 URL |
[48] |
Bird D, Beisson F, Brigham A, et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion[J]. Plant Journal, 2007,52(3):485-498.
doi: 10.1111/j.1365-313X.2007.03252.x URL |
[49] |
McFarlane H E, Shin J J H, Bird D A, et al. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations[J]. Plant Cell, 2010,22(9):3066-3075.
doi: 10.1105/tpc.110.077974 URL |
[50] |
Luo B, Xue X Y, Hu W L, et al. An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion[J]. Plant and Cell Physiology, 2007,48(12):1790-1802.
doi: 10.1093/pcp/pcm152 URL |
[51] |
Ukitsu H, Kuromori T, Toyooka K, et al. Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene[J]. Plant and Cell Physiology, 2007,48(11):1524-1533.
doi: 10.1093/pcp/pcm139 URL |
[52] |
Panikashvili D, Shi J X, Schreiber L, et al. The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis[J]. New Phytologist, 2011,190(1):113-124.
doi: 10.1111/nph.2011.190.issue-1 URL |
[53] |
Bessire M, Borel S, Fabre G, et al. A member of the pleiotropic drug resistance family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis[J]. Plant Cell, 2011,23(5):1958-1967.
doi: 10.1105/tpc.111.083121 URL |
[54] |
Fabre G, Garroum I, Mazurek S, et al. The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis[J]. New Phytologist, 2016,209(1):192-201.
doi: 10.1111/nph.2016.209.issue-1 URL |
[55] |
Quilichini T D, Samuels A L, Douglas C J. ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis[J]. Plant Cell, 2014,26(11):4483-4498.
doi: 10.1105/tpc.114.130484 URL |
[56] |
Choi H, Ohyama K, Kim Y Y, et al. The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat[J]. Plant Cell, 2014,26(1):310-324.
doi: 10.1105/tpc.113.118935 URL |
[57] |
Yadav V, Molina I, Ranathunge K, et al. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis[J]. Plant Cell, 2014,26(9):3569-3588.
doi: 10.1105/tpc.114.129049 URL |
[58] |
Yim S, Khare D, Kang J, et al. Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters[J]. Plant Cell Reports, 2016,35(9):1863-1873.
doi: 10.1007/s00299-016-2001-3 URL |
[59] |
Chang Z Y, Jin M N, Yan W, et al. The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice[J]. Rice, 2018,11(1):1-15.
doi: 10.1186/s12284-017-0196-8 URL |
[60] |
Luo T, Zou T, Yuan G, et al. Less and shrunken pollen 1(LSP1) encodes a member of the ABC transporter family required for pollen wall development in rice (Oryza sativa L)[J]. Crop Journal, 2019,8(3):492-504.
doi: 10.1016/j.cj.2019.09.001 URL |
[61] |
Niu B X, He F R, He M, et al. The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice[J]. Journal of Integrative Plant Biology, 2013,55(8):710-720.
doi: 10.1111/jipb.12053 URL |
[62] | Zhao G C, Shi J X, Liang W Q, et al. Two ATP binding cassette G transporters, rice ATP binding cassette G26 and ATP binding cassette G15, collaboratively regulate rice male reproduction[J]. Plant Physiol, 2015,169(3):2064-2079. |
[63] |
Wu L N, Guan Y S, Wu Z G, et al. OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice[J]. Plant Cell Report, 2014,33(11):1881-1899.
doi: 10.1007/s00299-014-1666-8 URL |
[64] | Zhang H S, Jing W, Zheng J M, et al. The ATP-binding cassette transporter OsPDR1 regulates plant growth and pathogen resistance by affecting jasmonates biosynjournal in rice[J]. Plant science, 2020,298(1):1-13. |
[65] |
Kim D Y, Jin J Y, Alejandro S, et al. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis[J]. Physiologia Plantarum, 2010,139(2):170-180.
doi: 10.1111/ppl.2010.139.issue-2 URL |
[66] |
Sukumar P, Maloney G S, Muday G K. Localized Induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis[J]. Plant physiology, 2013,162(3):1392-1405.
doi: 10.1104/pp.113.217174 URL |
[67] |
Kaneda M, Schuetz M, Lin B S P, et al. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport[J]. Journal of Experimental Botany, 2011,62(6):2063-2077.
doi: 10.1093/jxb/erq416 pmid: 21239383 |
[68] |
Nagy R, Grob H, Weder B, et al. The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage[J]. Journal of Biological Chemistry, 2009,284(48):33614-33622.
doi: 10.1074/jbc.M109.030247 URL |
[69] |
Francisco R M, Regalado A, Ageorges A, et al. ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides[J]. Plant Cell, 2013,25(5):1840-1854.
doi: 10.1105/tpc.112.102152 URL |
[70] |
Kim D Y, Bovet L, Kushnir S, et al. AtATM3 is involved in heavy metal resistance in Arabidopsis[J]. Plant Physiology, 2006,140(3):922-932.
doi: 10.1104/pp.105.074146 URL |
[71] |
Neess D, Bek S, Engelsby H, et al. Long-chain acyl-CoA esters in metabolism and signaling: role of acyl-CoA binding proteins[J]. Progress in Lipid Research, 2015,59(1):1-25.
doi: 10.1016/j.plipres.2015.04.001 URL |
[72] |
Chen Q F, Xiao S, Chye M L. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance[J]. Plant Physiology, 2008,148(1):304-315.
doi: 10.1104/pp.108.123331 URL |
[73] |
Meng W, Hsiao A S, Gao C J, et al. Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes[J]. New Phytologist, 2014,203(2):469-482.
doi: 10.1111/nph.2014.203.issue-2 URL |
[74] |
Yurchenko O, Singer S D, Nykiforuk C L, et al. Production of a Brassica napus low-molecular mass acyl-Coenzyme A-binding protein in Arabidopsis alters the acyl-Coenzyme A pool and acyl composition of oil in seeds[J]. Plant Physiology, 2014,165(2):550-560.
pmid: 24740000 |
[75] |
Qiao K, Wang M, Takano T, et al. Overexpression of acyl-CoA-binding protein 1(ChACBP1) from saline-alkali-tolerant chlorella sp. enhances stress tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2018,9(1):1-11.
doi: 10.3389/fpls.2018.00001 URL |
[76] |
Nie Z Y, Wang Y H, Wu C T, et al. Acyl-CoA-binding protein family members in laticifers are possibly involved in lipid and latex metabolism of Hevea brasiliensis (the Para rubber tree)[J]. BMC Genomics, 2018,19(1):1-5.
doi: 10.1186/s12864-017-4368-0 URL |
[77] |
Aznar-moreno J A, Venegas-Calerón M, Du Z Y, et al. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities[J]. Plant Physiology and Biochemistry, 2016,102(1):141-150.
doi: 10.1016/j.plaphy.2016.02.025 URL |
[78] |
Chye M L, Huang B Q, Zee S Y. Isolation of a gene encoding Arabidopsis membrane-associated acyl-CoA binding protein and immunolocalization of its gene product[J]. Plant Journal, 1999,18(2):205-214.
pmid: 10363372 |
[79] |
Li H Y, Chye M L. Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2[J]. Plant Molecular Biology, 2003,51(4):483-492.
doi: 10.1023/A:1022330304402 URL |
[80] |
Leung K C, Li H Y, Xiao S, et al. Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein[J]. Planta, 2006,223(5):871-881.
doi: 10.1007/s00425-005-0139-2 URL |
[81] |
Liao P, Leung K P, Lung S C, et al. Subcellular localization of rice acyl-CoA-binding proteins ACBP4 and ACBP5 supports their non-redundant roles in lipid metabolism[J]. Frontiers in plant science, 2020,11:331-331.
doi: 10.3389/fpls.2020.00331 pmid: 32265974 |
[82] | Pastor S, Sethumadhavan K, Ullah A H J, et al. Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii)[J]. Plant Science, 2013,203(1):79-88. |
[83] |
Takato H, Shimidzu M, Ashizawa Y, et al. An acyl-CoA-binding protein from grape that is induced through ER stress confers morphological changes and disease resistance in Arabidopsis[J]. Journal of Plant Physiology, 2013,170(6):591-600.
doi: 10.1016/j.jplph.2012.11.011 URL |
[84] |
Xiao S, Li H Y, Zhang J P, et al. Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition[J]. Plant Molecular Biology, 2008,68(6):571-583.
doi: 10.1007/s11103-008-9392-7 URL |
[85] |
Du Z Y, Chen M X, Chen Q F, et al. Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development[J]. Plant Journal, 2013,74(2):294-309.
doi: 10.1111/tpj.2013.74.issue-2 URL |
[86] |
Miao R, Lung S C, Li X, et al. Thermodynamic insights into an interaction between ACYL-COA-BINDING PROTEIN2 and LYSOPHOSPHOLIPASE2 in Arabidopsis[J]. Journal of Biological Chemistry, 2019,294(16):6214-6226.
doi: 10.1074/jbc.RA118.006876 pmid: 30782848 |
[87] |
Guo Z H, Haslam R P, Michaelson L V, et al. The overexpression of rice ACYL-CoA-BINDING PROTEIN2 increases grain size and bran oil content in transgenic rice[J]. The Plant Journal, 2019,100(6):1132-1147.
doi: 10.1111/tpj.v100.6 URL |
[88] |
Lung S C, Liao P, Yeung E C, et al. Arabidopsis ACYL-COA-BINDING PROTEIN1 interacts with STEROL C4-METHYL OXIDASE1-2 to modulate gene expression of homeodomain-leucine zipper IV transcription factors[J]. New Phytologist, 2018,218(1):183-200.
doi: 10.1111/nph.14965 URL |
[89] |
Xiao S, Gao W, Chen Q F, et al. Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence[J]. Plant Cell, 2010,22(5):1463-1482.
doi: 10.1105/tpc.110.075333 URL |
[90] |
Xiao S, Chye M L. The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability[J]. Autophagy, 2010,6(6):802-804.
doi: 10.1105/tpc.110.075333 pmid: 20574160 |
[91] |
Hsiao A S, Yeung E C, Ye Z W, et al. The Arabidopsis cytosolic acyl-CoA-binding proteins play combinatory roles in pollen development[J]. Plant and Cell Physiology, 2015,56(2):322-333.
doi: 10.1093/pcp/pcu163 URL |
[92] |
Meng W, Xu L J, Du Z Y, et al. RICE ACYL-COA-BINDING PROTEIN6 affects acyl-CoA homeostasis and growth in rice[J]. Rice, 2020,13(1):1-17.
doi: 10.1186/s12284-019-0361-3 URL |
[93] |
Xiao S, Gao W, Chen Q F, et al. Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis[J]. Plant Journal, 2008,54(1):141-151.
doi: 10.1111/j.1365-313X.2008.03402.x URL |
[94] | Du Z Y, Chen M X, Chen Q F, et al. Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots[J]. Plant Cell & Environment, 2015,38(1):101-117. |
[95] |
Xie L J, Yu L J, Chen Q F, et al. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism[J]. Plant Journal, 2015,81(1):53-67.
doi: 10.1111/tpj.2014.81.issue-1 URL |
[96] |
Du Z Y, Xiao S, Chen Q F, et al. Depletion of the membrane-associated acyl-coenzyme a-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis[J]. Plant Physiology, 2010,152(3):1585-1597.
doi: 10.1104/pp.109.147066 URL |
[97] |
Lung S C, Chye M L. Arabidopsis acyl-CoA-binding proteins regulate the synjournal of lipid signals[J]. New Phytologist, 2019,223(1):113-117.
doi: 10.1111/nph.2019.223.issue-1 URL |
[98] |
Du Z Y, Chen M X, Chen Q F, et al. Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance[J]. Plant Cell and Environment, 2013,36(2):300-314.
doi: 10.1111/j.1365-3040.2012.02574.x URL |
[99] |
Licausi F, Kosmacz M, Weits D A, et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization[J]. Nature, 2011,479(7373):419-422.
doi: 10.1038/nature10536 URL |
[100] | Li H Y, Xiao S, Chye M L. Ethylene-and pathogen-inducible Arabidopsis acyl-CoA binding protein 4 interacts with an ethylene-responsive element binding protein[M] Journal of Experimental Botany, 2008,59(14):3997-4006. |
[101] |
Li H Y, Chye M L. Arabidopsis acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats[J]. Plant Molecular Biology, 2004,54(2):233-243.
doi: 10.1023/B:PLAN.0000028790.75090.ab URL |
[102] | Narayanan S P, Liao P, Taylor P W J , et al. Overexpression of a monocot acyl-CoA-binding protein confers broad-spectrum pathogen protection in a dicot[J]. Proteomics, 2019,19(1):1-10. |
[103] |
Xiao S, Chye M L. Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000[J]. Plant Physiology, 2011,156(4):2069-2081.
doi: 10.1104/pp.111.176933 pmid: 21670223 |
[104] | 秦朋飞. 棉花酰基辅酶A结合蛋白家族基因的发掘及在非生物胁迫抗性中的功能鉴定[D]. 南京: 南京农业大学, 2016. |
[105] | 柏素花, 祝军, 戴洪义. 苹果酰基辅酶A结合蛋白2编码基因MdACBP2的克隆和表达分析[J]. 园艺学报, 2012,39(10):1893-1902. |
[1] | 李婷婷, 马娟娟, 张建华. 农业大数据信息采集平台建设研究[J]. 中国农学通报, 2022, 38(3): 158-164. |
[2] | 王强盛, 余坤龙, 甄若宏, 甘立军, 张慧. 功能农业发展的必要性及途径分析[J]. 中国农学通报, 2022, 38(26): 144-149. |
[3] | 王晓康. 山西省关帝山国有林区森林生态系统服务功能价值估算研究[J]. 中国农学通报, 2022, 38(23): 49-55. |
[4] | 黄成, 李旭楠, 李诗燕, 王锦达. 植物SWEET基因家族的研究进展[J]. 中国农学通报, 2022, 38(17): 17-26. |
[5] | 陈思琪, 孙敬爽, 麻文俊, 王军辉, 赵曦阳, 胡瑞阳. 植物低温胁迫调控机制研究进展[J]. 中国农学通报, 2022, 38(17): 51-61. |
[6] | 袁丛军, 杨光能, 胡红, 黄安香, 杨守禄, 李迅, 赵勇. 花椒废弃物功能化利用研究进展[J]. 中国农学通报, 2022, 38(17): 75-81. |
[7] | 张会敏, 陈睿, 鲜小林. 中国功能菊花的研究进展[J]. 中国农学通报, 2022, 38(14): 38-46. |
[8] | 张作达, 吴若娜, 王琴飞, 牛晓磊, 张振文. 植物源功能活性多肽研究进展[J]. 中国农学通报, 2022, 38(12): 88-94. |
[9] | 任春燕, 刘杰, 罗明华, 聂忠扬, 黄宁, 赵海燕, 唐良德. 天敌昆虫—蠋蝽的研究进展[J]. 中国农学通报, 2022, 38(12): 100-109. |
[10] | 于会丽, 徐变变, 徐国益, 邵微, 高登涛, 司鹏. 生物有机肥对苹果幼苗生长、生理特性以及土壤微生物功能多样性的影响[J]. 中国农学通报, 2022, 38(1): 32-38. |
[11] | 詹孟于. 绿色发展下新型农业经营主体在乡村振兴中的功能及发展策略[J]. 中国农学通报, 2021, 37(35): 141-146. |
[12] | 郭鎏, 刘栓, 印遇龙, 万丹. 动物源富铁功能食品开发研究进展[J]. 中国农学通报, 2021, 37(35): 98-103. |
[13] | 杜明, 方玉, 李潜龙, 康云海, 王慧, 张从合. 玉米淀粉调控的研究进展[J]. 中国农学通报, 2021, 37(33): 8-14. |
[14] | 高晶晶, 刘红梅, 杨殿林, 李睿颖, 朱平, 高洪军, 李静, 张秀芝, 彭畅. 不同耕作方式对玉米田土壤微生物功能多样性的影响[J]. 中国农学通报, 2021, 37(3): 98-104. |
[15] | 李富强, 张廷新, 李晓杰, 朱丽萍, 颜世敢. 藻胆蛋白源生物活性肽研究进展[J]. 中国农学通报, 2021, 37(27): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||