中国农学通报 ›› 2021, Vol. 37 ›› Issue (27): 70-76.doi: 10.11924/j.issn.1000-6850.casb2021-0005
所属专题: 生物技术
收稿日期:
2020-12-15
修回日期:
2021-04-24
出版日期:
2021-09-25
发布日期:
2021-10-28
通讯作者:
颜世敢
作者简介:
李富强,男,1996年出生,山东临沂人,硕士研究生;研究方向:生物活性肽。通信地址:250353 山东省济南市长清区大学路3501号齐鲁工业大学生物工程学院,Tel:15865286609,E-mail: 基金资助:
Li Fuqiang(), Zhang Tingxin, Li Xiaojie, Zhu Liping, Yan Shigan()
Received:
2020-12-15
Revised:
2021-04-24
Online:
2021-09-25
Published:
2021-10-28
Contact:
Yan Shigan
摘要:
本研究旨在为藻胆蛋白源生物活性肽的发掘、构-效关系表征提供重要参考,推动藻胆蛋白源生物活性肽的研发和应用。本研究综述了具有不同生物学活性的藻胆蛋白源活性肽,包括抗氧化肽、降血压肽、免疫调节肽、降糖肽、抗菌肽和抗炎肽等,归纳了藻胆蛋白源生物活性肽的来源、制备、结构鉴定、功能表征及构-效关系研究进展,指出利用传统方法研发生物活性肽存在一定盲目性,提出利用生物信息学与传统方法相结合有利于高效发掘新型藻胆蛋白源生物活性肽,为生物活性肽的研发提供了新策略。
中图分类号:
李富强, 张廷新, 李晓杰, 朱丽萍, 颜世敢. 藻胆蛋白源生物活性肽研究进展[J]. 中国农学通报, 2021, 37(27): 70-76.
Li Fuqiang, Zhang Tingxin, Li Xiaojie, Zhu Liping, Yan Shigan. Bioactive Peptides Derived from Phycobiliprotein: A Review[J]. Chinese Agricultural Science Bulletin, 2021, 37(27): 70-76.
活性肽的名称 | 活性肽的结构 | 活性肽的藻来源 | 文献 |
---|---|---|---|
抗氧化肽 | RYVSYALLAGDPSVLEDRC | 条斑紫菜 | [ |
抗氧化肽 | PNN | 螺旋藻 | [ |
抗氧化肽 | DYYKR | 紫菜 | [ |
抗炎肽 | LRDGEIILRY | 掌状红皮藻 | [ |
降血压肽 | AILAGDPSVLEDR | 红藻 | [ |
降血压肽 | VVGGTGPVDEWGIAGAR | 红藻 | [ |
降血压肽 | YRD | 日本掌状红皮藻 | [ |
降血压肽 | LDY | 日本掌状红皮藻 | [ |
降血压肽 | LRY | 日本掌状红皮藻 | [ |
降血压肽 | LF | 日本条斑紫菜 | [ |
降血压肽 | VY | 日本裙带菜 | [ |
降血压肽 | FY | 日本裙带菜 | [ |
降血压肽 | TYIA | 紫菜 | [ |
降血糖肽 | YLVA | 紫菜 | [ |
抗肿瘤肽 | VPGTPKNLDSPR | 坛紫菜 | [ |
抗肿瘤肽 | MPAPSCALPRSVVPPR | 坛紫菜 | [ |
抗肿瘤肽 | QTDDNHSNVLWAGFSR | 坛紫菜 | [ |
抗肿瘤肽 | QTDDNHSNVLWAGFSR | 坛紫菜 | [ |
抗菌肽 | KLVDASHIRLATGDVAVRA | 螺旋藻 | [ |
抗菌肽 | ATHDNCCLRQS | 螺旋藻渣 | [ |
活性肽的名称 | 活性肽的结构 | 活性肽的藻来源 | 文献 |
---|---|---|---|
抗氧化肽 | RYVSYALLAGDPSVLEDRC | 条斑紫菜 | [ |
抗氧化肽 | PNN | 螺旋藻 | [ |
抗氧化肽 | DYYKR | 紫菜 | [ |
抗炎肽 | LRDGEIILRY | 掌状红皮藻 | [ |
降血压肽 | AILAGDPSVLEDR | 红藻 | [ |
降血压肽 | VVGGTGPVDEWGIAGAR | 红藻 | [ |
降血压肽 | YRD | 日本掌状红皮藻 | [ |
降血压肽 | LDY | 日本掌状红皮藻 | [ |
降血压肽 | LRY | 日本掌状红皮藻 | [ |
降血压肽 | LF | 日本条斑紫菜 | [ |
降血压肽 | VY | 日本裙带菜 | [ |
降血压肽 | FY | 日本裙带菜 | [ |
降血压肽 | TYIA | 紫菜 | [ |
降血糖肽 | YLVA | 紫菜 | [ |
抗肿瘤肽 | VPGTPKNLDSPR | 坛紫菜 | [ |
抗肿瘤肽 | MPAPSCALPRSVVPPR | 坛紫菜 | [ |
抗肿瘤肽 | QTDDNHSNVLWAGFSR | 坛紫菜 | [ |
抗肿瘤肽 | QTDDNHSNVLWAGFSR | 坛紫菜 | [ |
抗菌肽 | KLVDASHIRLATGDVAVRA | 螺旋藻 | [ |
抗菌肽 | ATHDNCCLRQS | 螺旋藻渣 | [ |
[1] |
Pagels F, Guedes A C, Amaro H M, et al. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications[J]. Biotechnology advances, 2019, 37(3):422-443.
doi: 10.1016/j.biotechadv.2019.02.010 URL |
[2] |
Görgüç A, Gençdağ E, Yılmaz F M. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments-A review[J]. Food Research International, 2020, 136:109504.
doi: S0963-9969(20)30529-9 pmid: 32846583 |
[3] | 范敏. 钝顶螺旋藻藻蓝蛋白及其酶解产物的抗肿瘤活性研究[D]. 呼和浩特:内蒙古农业大学, 2008. |
[4] | 马莹, 胡志和, 薛璐, 等. 双酶水解螺旋藻藻胆蛋白制备ACE抑制肽的工艺优化[J]. 食品工业科技, 2019, 40(12):178-185. |
[5] | Martínez-Palma N, Martínez-Ayala A, Dávila-Ortiz G. Determination of antioxidant and chelating activity of protein hydrolysates from Spirulina (Arthrospira maxima) obtained by simulated gastrointestinal digestion[J]. Revista Mexicana de Ingeniera Quimica, 2015, 14(1):25-34. |
[6] |
Admassu H, Gasmalla M A A, Yang R, et al. Bioactive Peptides Derived from Seaweed Protein and Their Health Benefits: Antihypertensive, Antioxidant, and Antidiabetic Properties[J]. Journal of Food Science, 2018, 83(1):6-16.
doi: 10.1111/1750-3841.14011 URL |
[7] |
Nwachukwu I D, Aluko R E. Structural and functional properties of food protein-derived antioxidant peptides[J]. Journal of Food Biochemistry, 2019, 43(1):e12761.
doi: 10.1111/jfbc.12761 URL |
[8] |
Yaribeygi H, Atkin S L, Sahebkar A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress[J]. Journal of cellular physiology, 2019, 234(2):1300-1312.
doi: 10.1002/jcp.27164 pmid: 30146696 |
[9] |
Park P J, Jung W K, Nam K S, et al. Purification and characterization of antioxidative peptides from protein hydrolysate of lecithin-free egg yolk[J]. Journal of the American Oil Chemists Society, 2001, 78(6):651-656.
doi: 10.1007/s11746-001-0321-0 URL |
[10] |
Rajapakse N, Mendis E, Byun H G, et al. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems[J]. Journal of Nutritional Biochemistry, 2005, 16(9):562-569.
pmid: 16115545 |
[11] |
Sannasimuthu A, Arockiaraj J. Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis[J]. Journal of Functional Foods, 2019, 61:103513.
doi: 10.1016/j.jff.2019.103513 URL |
[12] |
Chen H, Wang S, Zhou A, et al. A novel antioxidant peptide purified from defatted round scad (Decapterus maruadsi) protein hydrolysate extends lifespan in Caenorhabditis elegans[J]. Journal of Functional Foods, 2020, 68:103907.
doi: 10.1016/j.jff.2020.103907 URL |
[13] |
Sheng J, Yang X, Chen J, et al. Antioxidative effects and mechanism study of bioactive peptides from defatted walnut (Juglans regia L.) meal hydrolysate[J]. Journal of agricultural and food chemistry, 2019, 67(12):3305-3312.
doi: 10.1021/acs.jafc.8b05722 URL |
[14] |
Indiano-Romacho P, Fernández-Tomé S, Amigo L, et al. Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion[J]. Food Research International, 2019, 125:108513.
doi: S0963-9969(19)30384-9 pmid: 31554062 |
[15] |
Brabakaran A, Venkatesan S, Jayappriyan K R, et al. Antioxidant Properties of R-Phycoerythrin from Red Alga Spyridia filamentosa (Wulfen) Harvey Collected on the Pudumadam Coast[J]. Advanced Science, Engineering and Medicine, 2020, 12(4):489-498.
doi: 10.1166/asem.2020.2562 URL |
[16] | Dewi N, Santoso J, Setyaningsih I, et al. Extraction of phycoerythrin from Kappaphycus alvarezii seaweed using ultrasonication[J] Earth and Environmental Science. 2020, 414(1):012028. |
[17] |
Ganesan A R, Shanmugam M. Isolation of phycoerythrin from Kappaphycus alvarezii: a potential natural colourant in ice cream[J]. Journal of Applied Phycology, 2020, 32(6):4221-4233.
doi: 10.1007/s10811-020-02214-0 URL |
[18] | Zang F, Qin S, Ma C, et al. Structure, function and applications of phycoerythrin: a unique light harvesting protein in algae[J]. Chinese Science Bulletin, 2020, 65(7):565-576. |
[19] |
Ferraro G, Imbimbo P, Marseglia A, et al. A thermophilic C-phycocyanin with unprecedented biophysical and biochemical properties[J]. International Journal of Biological Macromolecules, 2020, 150:38-51.
doi: 10.1016/j.ijbiomac.2020.02.045 URL |
[20] | Nowruzi B Anvar S A A Ahari H. Extraction, purification and evaluation of antimicrobial and antioxidant properties of phycoerythrin from terrestrial cyanobacterium Nostoc sp. FA1[J]. Journal of Microbial World, 2020, 13(2):138-153. |
[21] |
Hsieh-Lo M, Castillo G, Ochoa-Becerra M A, et al. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability[J]. Algal Research, 2019, 42:101600.
doi: 10.1016/j.algal.2019.101600 URL |
[22] | Osman A, Abd-Elaziz S, Salama A, et al. Health protective actions of phycocyanin obtained from an Egyptian isolate of Spirulina platensis on albino rats[J]. EurAsian Journal of BioSciences, 2019, 13(1):105-112. |
[23] | Kim E Y, Choi Y H, Nam T J. Identification and antioxidant activity of synthetic peptides from phycobiliproteins of Pyropia yezoensis[J]. International Journal of Molecular Medicine, 2018, 42(2):789-798. |
[24] |
Yu J, Hu Y, Xue M, et al. Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Spirulina platensis[J]. Journal of Microbiology and Biotechnology, 2016, 26(7):1216-1223.
doi: 10.4014/jmb.1601.01033 URL |
[25] |
Mysliwa-Kurdziel B, Solymosi K. Phycobilins and phycobiliproteins used in food industry and medicine[J]. Mini Reviews in Medicinal Chemistry, 2017, 17(13):1173-1193.
doi: 10.2174/1389557516666160912180155 pmid: 27633748 |
[26] | Yéprémian C, Demay J, Halary S, et al. Anti-inflammatory, antioxidant and wound healing properties of cyanobacteria from thermal mud of Balaruc-les-Bains, France: a multi-approach study[J]. Preprints, 2020, 11(1):28. |
[27] |
Lee D, Nishizawa M, Shimizu Y, et al. Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a[J]. Food Research International, 2017, 100(1):514-521.
doi: 10.1016/j.foodres.2017.06.040 URL |
[28] | Li Y, Lammi C, Boschin G, et al. Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis[J]. Journal of Agricultural & Food Chemistry, 2019, 67(43):11825-11838. |
[29] |
Mirzaei M, Mirdamadi S, Safavi M. Structural analysis of ACE-inhibitory peptide (VL-9) derived from Kluyveromyces marxianus protein hydrolysate[J]. Journal of Molecular Structure, 2020, 1213:128199.
doi: 10.1016/j.molstruc.2020.128199 URL |
[30] |
Obaroakpo J U, Liu L, Zhang S, et al. α-Glucosidase and ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa yoghurt beverages inoculated with Lactobacillus casei[J]. Food chemistry, 2019, 299:124985.
doi: 10.1016/j.foodchem.2019.124985 URL |
[31] | Wu Q, Cai Q F, Yoshida A, et al. Purification and characterization of two novel angiotensin I-converting enzyme inhibitory peptides derived from R-phycoerythrin of red algae (Bangia fusco-purpurea)[J]. European Food Research & Technology, 2017, 243(5):779-789. |
[32] |
Kitade Y, Miyabe Y, Yamamoto Y, et al. Structural characteristics of phycobiliproteins from red alga Mazzaella japonica[J]. Journal of Food Biochemistry, 2018, 42(1):e12436.
doi: 10.1111/jfbc.2018.42.issue-1 URL |
[33] |
Furuta T, Miyabe Y, Yasui H, et al. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata[J]. Marine Drugs, 2016, 14(2):32.
doi: 10.3390/md14020032 URL |
[34] | Suetsuna K. Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis[J]. Journal of Marine Biotechnology, 1998, 6(3):163-167. |
[35] |
Suetsuna K, Maekawa K, Chen J R. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats[J]. Journal of Nutritional Biochemistry, 2004, 15(5):267-272.
pmid: 15135150 |
[36] |
Munawaroh H S H, Gumilar G G, Nurjanah F, et al. In-vitro molecular docking analysis of microalgae extracted phycocyanin as an anti-diabetic candidate[J]. Biochemical Engineering Journal, 2020, 161(15):107666.
doi: 10.1016/j.bej.2020.107666 URL |
[37] |
Li Y, Aiello G, Bollati C, et al. Phycobiliproteins from Arthrospira Platensis (Spirulina): A New Source of Peptides with Dipeptidyl Peptidase-IV Inhibitory Activity[J]. Nutrients, 2020, 12(3):794.
doi: 10.3390/nu12030794 URL |
[38] | Cermeño M, Stack J, Tobin P R, et al. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities[J]. Food & Function, 2019, 10(6):3421-3429. |
[39] |
Jiang Y, Guo F, Chen L, et al. The antitumor activity of naturally occurring chromones: A review[J]. Fitoterapia, 2019, 135(6):114-129.
doi: 10.1016/j.fitote.2019.04.012 URL |
[40] | Sharma P, Kaur H, Kehinde B A, et al. Food-derived anticancer peptides: A review[J]. International Journal of Peptide Research and Therapeutics, 2020: 1-16. |
[41] |
Liu Z, Fu X, Huang W, et al. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 180:89-97.
doi: 10.1016/j.jphotobiol.2017.12.020 URL |
[42] |
Jiang L, Wang Y, Liu G, et al. C-Phycocyanin exerts anti-cancer effects via the MAPK signaling pathway in MDA-MB-231 cells[J]. Cancer Cell International, 2018, 18(1):1-14.
doi: 10.1186/s12935-017-0498-3 URL |
[43] |
Pan R, Lu R, Zhang Y, et al. Spirulina phycocyanin induces differential protein expression and apoptosis in SKOV-3 cells[J]. International journal of biological macromolecules, 2015, 81:951-959.
doi: 10.1016/j.ijbiomac.2015.09.039 URL |
[44] |
Saini M K, Sanyal S N. Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor[J]. Biochemistry and Cell Biology, 2014, 92(3):206-218.
doi: 10.1139/bcb-2014-0016 URL |
[45] |
Hao S, Li S, Wang J, et al. Phycocyanin Exerts Anti-Proliferative Effects through Down-Regulating TIRAP/NF-κB Activity in Human Non-Small Cell Lung Cancer Cells[J]. Cells, 2019, 8(6):588.
doi: 10.3390/cells8060588 URL |
[46] |
Baudelet P H, Gagez A L, Bérard J B, et al. Antiproliferative activity of Cyanophora paradoxa pigments in melanoma, breast and lung cancer cells[J]. Marine Drugs, 2013, 11(11):4390-4406.
doi: 10.3390/md11114390 URL |
[47] |
Subhashini J, Mahipal S V K, Reddy M C, et al. Molecular mechanisms in C-Phycocyanin induced apoptosis in human chronic myeloid leukemia cell line-K562.[J]. Biochemical Pharmacology, 2004, 68(3):453-462.
pmid: 15242812 |
[48] |
Fan X, Bai L, Mao X, et al. Novel peptides with anti-proliferation activity from the Porphyra haitanesis hydrolysate[J]. Process Biochemistry, 2017, 60:98-107.
doi: 10.1016/j.procbio.2017.05.018 URL |
[49] |
Mao X, Bai L, Fan X, et al. Anti-proliferation peptides from protein hydrolysates of Pyropia haitanensis[J]. Journal of Applied Phycology, 2017, 29(3):1623-1633.
doi: 10.1007/s10811-016-1037-7 URL |
[50] | Mahmoud S, Ali O, Abdel G, et al. Antibacterial phycocyanin from Anabaena oryzae SOS13[J]. International Journal of Applied Research in Natural Products, 2016, 8(4):27-36. |
[51] | Shanmugam A, Sigamani S, Venkatachalam H, et al. Antibacterial activity of extracted phycocyanin from Oscillatoria sp.[J]. Journal of Applied Pharmaceutical Science, 2017, 7(3):62-67. |
[52] |
Mohamed S A, Osman A, Abo Eita A, et al. Estimation of antibacterial and antioxidant activities of phycocyanin isolated from Spirulina[J]. Zagazig Journal of Agricultural Research, 2018, 45(2):657-666.
doi: 10.21608/zjar.2018.49187 URL |
[53] | 孙宜君. 螺旋藻抗菌肽的纯化鉴定及其抑菌机理的研究[D]. 北京:北京林业大学, 2016. |
[54] | 付云, 赵谋明, 卢美杉, 等. 枯草芽孢杆菌YA215发酵螺旋藻渣产抑菌活性的工艺[J]. 食品与发酵工业, 2020, 46:146-152. |
[55] | 付云, 赵谋明, 庞一扬, 等. 源自螺旋藻渣枯草芽孢杆菌发酵抗菌肽SP-AP-1和Iturin A对金黄色葡萄球菌抑菌机制对比研究[J]. 食品科学, 2020, 41(5):1-13. |
[56] |
Rahiman S S F, Morgan M, Gray P, et al. Inhibitory effects of dynorphin 3-14 on the lipopolysaccharide-induced toll-like receptor 4 signalling pathway[J]. Peptides, 2017, 90:48-54.
doi: 10.1016/j.peptides.2017.02.004 URL |
[57] |
Xiao M, Ding L, Yang W, et al. St20, a new venomous animal derived natural peptide with immunosuppressive and anti-inflammatory activities[J]. Toxicon, 2017, 127:37-43.
doi: S0041-0101(17)30008-9 pmid: 28077339 |
[58] |
Hou H, Fan Y, Wang S, et al. Immunomodulatory activity of Alaska pollock hydrolysates obtained by glutamic acid biosensor-Artificial neural network and the identification of its active central fragment[J]. Journal of Functional Foods, 2016, 24:37-47.
doi: 10.1016/j.jff.2016.03.033 URL |
[59] | Díaz Domínguez G Marsán Suárez V del Valle Pérez L O. Main immunomodulatory and anti-inflamatory properties of phycobiliproteins C-phycocyanin[J]. Revista Cubana de Hematología, Inmunología y Hemoterapia, 2016, 32(4):447-454. |
[60] |
Taniguchi M, Kuda T, Shibayama J, et al. In vitro antioxidant, anti-glycation and immunomodulation activities of fermented blue-green algae Aphanizomenon flos-aquae[J]. Molecular biology reports, 2019, 46(2):1775-1786.
doi: 10.1007/s11033-019-04628-7 pmid: 30694455 |
[61] | 杨磊. 螺旋藻活性肽的制备及其免疫调节功能研究[D]. 桂林:广西大学, 2009. |
[62] | 頡宇, 胡锦灵, 赵宏飞, 等. 基于生物信息学定向制备柠条籽蛋白抗氧化肽的工艺优化[J]. 食品科学, 2019, 41(20):278-284. |
[1] | 梁俊芬, 张磊, 张辉玲, 周灿芳, 万忠. 改革开放以来广东农民收入变化特征及未来选择[J]. 中国农学通报, 2022, 38(6): 149-157. |
[2] | 张勇, 徐智, 高丽芳, 邓亚琴, 王瑞雪, 王宇蕴. 有机类肥料部分替代化肥影响新垦红壤生菜地产量因素的研究[J]. 中国农学通报, 2022, 38(5): 79-85. |
[3] | 李锐, 尚霄, 尚春树, 常利芳, 闫蕾, 白建荣. SSR荧光检测解析224份山西玉米自交系的遗传结构与遗传关系[J]. 中国农学通报, 2022, 38(5): 9-16. |
[4] | 沙月霞, 黄泽阳, 魏照清. 生物菌剂撒施对宁夏石嘴山盐碱地微生物群落结构的影响[J]. 中国农学通报, 2022, 38(34): 82-90. |
[5] | 李政璞, 佟静, 王素娜, 李炎艳, 王丽萍, 梁浩, 武占会. 光周期对植物工厂水芹产量和品质的影响[J]. 中国农学通报, 2022, 38(31): 38-42. |
[6] | 刘琪, 高志强, 杨珍平, 乔月静. 合理氮肥用量改善冬小麦土壤耕层细菌群落结构及理化性质研究[J]. 中国农学通报, 2022, 38(30): 77-84. |
[7] | 李婷婷, 马娟娟, 张建华. 农业大数据信息采集平台建设研究[J]. 中国农学通报, 2022, 38(3): 158-164. |
[8] | 姜玉琴, 谢先进, 黄达. 耕地质量对耕地生产力的影响[J]. 中国农学通报, 2022, 38(3): 75-80. |
[9] | 晁赢, 付钢锋, 阎祥慧, 杭中桥, 杨全刚, 王会, 潘红, 娄燕宏, 诸玉平. 有机肥对作物品质、土壤肥力及环境影响的研究进展[J]. 中国农学通报, 2022, 38(29): 103-107. |
[10] | 王强盛, 余坤龙, 甄若宏, 甘立军, 张慧. 功能农业发展的必要性及途径分析[J]. 中国农学通报, 2022, 38(26): 144-149. |
[11] | 郭文, 代希茜, 莫楠, 张应青, 余晨, 田江, 耿智德, 李露. 东盟国家大豆种植及其大豆产品进出口结构分析[J]. 中国农学通报, 2022, 38(23): 156-164. |
[12] | 王晓康. 山西省关帝山国有林区森林生态系统服务功能价值估算研究[J]. 中国农学通报, 2022, 38(23): 49-55. |
[13] | 崔雪娇, 佟潇禹, 张彦龙, 曾伟民. 刺五加果多糖ASPF的结构表征及其体外抗肺癌活性研究[J]. 中国农学通报, 2022, 38(22): 157-164. |
[14] | 乔绪强, 郭婷婷, 杨炳松, 李建召, 梁美霞. 苹果组培苗移栽过程中根茎叶解剖结构变化[J]. 中国农学通报, 2022, 38(22): 49-54. |
[15] | 王丽学, 韩静, 陈龙宾, 余新越, 刘景喜, 马毅, 霍文娟. 甲酸和木醋液对苜蓿青贮细菌群落结构的影响[J]. 中国农学通报, 2022, 38(2): 92-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||