中国农学通报 ›› 2022, Vol. 38 ›› Issue (30): 91-99.doi: 10.11924/j.issn.1000-6850.casb2021-0941
李舟1,2(), 杨雅云2(), 戴陆园2, 张斐斐2, 阿新祥2, 董超2, 王斌2, 汤翠凤2
收稿日期:
2021-09-30
修回日期:
2022-03-28
出版日期:
2022-10-25
发布日期:
2022-10-27
通讯作者:
杨雅云
作者简介:
李舟,男,1997 年出生,云南昆明人,硕士研究生,研究方向:水稻抗病育种。通信地址:650504 云南省昆明市盘龙区白塔路汇都国际C-A,Tel:13577063626,E-mail: 基金资助:
LI Zhou1,2(), YANG Yayun2(), DAI Luyuan2, ZHANG Feifei2, A Xinxiang2, DONG Chao2, WANG Bin2, TANG Cuifeng2
Received:
2021-09-30
Revised:
2022-03-28
Online:
2022-10-25
Published:
2022-10-27
Contact:
YANG Yayun
摘要:
水稻白叶枯病严重制约水稻生产,抗病基因的发掘与利用是目前防治该病害最环保有效的手段。为高效发掘、研究和利用抗白叶枯病基因,本文概述了白叶枯病菌与水稻的互作机制,总结了抗白叶枯病基因的定位与克隆现状并对其功能类型加以分类,归纳了抗病相关因子的研究进展。针对目前抗白叶枯病基因的研究进展缓慢且概述性研究报道相对滞后的现状,提出研究展望,认为应更深入研究水稻抗白叶枯病基因的定位克隆与利用,并大力探究抗病基因与抗病相关因子的协同作用关系。
中图分类号:
李舟, 杨雅云, 戴陆园, 张斐斐, 阿新祥, 董超, 王斌, 汤翠凤. 水稻白叶枯病抗性基因和相关因子研究利用进展[J]. 中国农学通报, 2022, 38(30): 91-99.
LI Zhou, YANG Yayun, DAI Luyuan, ZHANG Feifei, A Xinxiang, DONG Chao, WANG Bin, TANG Cuifeng. Rice Bacterial Blight Resistance Genes and Resistance-related Factors: A Review on Research and Utilization[J]. Chinese Agricultural Science Bulletin, 2022, 38(30): 91-99.
基因位点 | 无毒菌株(小种) | 供体品种 | 染色体 | 连锁标记 | 蛋白类型 | 参考文献 |
---|---|---|---|---|---|---|
Xa1* | 日本菌株X-17 | 黄玉、Java14 | 4 | C600(0 cM)、XNpb235(0 cM)、U08750(1.5 cM) | NLR | [ |
Xa2* | 日本菌株X-17 | Te-tep | 4 | HZR950-5~HZR970-4(190 kb)、 G235~C600(0.2 cM) | NLR | [ |
Xa3/Xa26* | 印尼菌株T7174、 T7174等 | 早生爱国3、 明恢63等 | 11 | XNbp181(2.3 cM)、RM224(0.21 cM)、 Y6855R(1.47 cM) | RLK | [ |
Xa4* | 菲律宾菌株PX025(1) | TKM-6、IR20、IR22 | 11 | XNpb181(1.7 cM)、XNpb78(1.7 cM) | WAK | [ |
xa5* | 菲律宾菌株PX025(1) | DZ192、Ir1545-339 | 5 | RG556(<1 cM)、RG207(<1 cM)、 RM122(0.7 cM)、RM390(0.4 cM) | TFIIA | [ |
Xa7* | 菲律宾菌株PX061(1) | DV85、DV86、DZ78 | 6 | G1091(6.0 cM)、AFLP31-10(3 cM)、GDSSR02~RM20593(0.21 cM) | EXECUTOR | [ |
xa8 | 菲律宾菌株PX061(1) | PI231128 | 7 | RM214(19.9 cM) | [ | |
Xa10* | 菲律宾4个小种 | Cas209 | 11 | O072000(5.3 cM)、M491~M419(0.28 cM) | EXECUTOR | [ |
Xa11 | 印尼菌株T7174 | IR944-102-2-3 | 3 | RM347(2.0 cM)、KUX11(1.0 cM) | [ | |
Xa12 | 印尼菌系Xo-7306(V) | 黄玉、Java14 | 4 | - | [ | |
xa13* | 菲律宾小种6 | BJ1 | 8 | RZ28(5.1 cM)、G136(3.8 cM)、RP7~ST12(9.2 kb) | SWEET | [ |
Xa14* | 菲律宾小种5 | TN1 | 4 | RG620(20.1 cM)、HZR970-8~HZR988-1(0.68 cM) | NLR | [ |
基因位点 | 无毒菌株(小种) | 供体品种 | 染色体 | 连锁标记 | 蛋白类型 | 参考文献 |
xa15 | 日本小种Ⅰ、Ⅱ、Ⅲ、Ⅳ | M41诱变体 | - | - | [ | |
Xa16 | 日本小种Ⅶ | Tetep | - | - | [ | |
Xa17 | 日本小种Ⅱ | 阿苏稔 | - | - | [ | |
Xa18 | 缅甸菌株 | IR24、密阳23、丰锦 | - | - | [ | |
xa19 | 6个菲律宾小种 | IR24的诱变体XM5 | - | - | [ | |
xa20 | 6个菲律宾小种 | IR24的诱变体XM6 | - | - | [ | |
Xa21* | 菲律宾小种1、2、4、6 | 长药野生稻 | 11 | RG103(0 cM) | RLK | [ |
Xa22(t) | 菲律宾菌株PXO61 | 扎昌龙 | 11 | CR543(7.1 cM)、RZ536(10.7 cM)、Y6855RA(0.4 cM)、G2132B(0.7 cM) | [ | |
Xa23* | PXO99 (菲律宾小种6) | 普通野生稻 | 11 | C189(0.8 cM)、CP02662(1.3 cM) | EXECUTOR | [ |
xa24(t)* | 菲律宾小种 1、2、4、6 | DV86 | 2 | RM14222~RM14224(10 kb) | 未知蛋白 | [ |
xa25* | 菲律宾小种9 | 明恢63 | 12 | G1314(7.3 cM)、R887(3.0 cM)、MZ2(0.38 cM)、MZ7(0.06 cM) | SWEET | [ |
Xa25(t) | 菲律宾小种1、3、4 | 明恢63、无性系 突变体HX3 | 4 | RM6748(9.3 cM)、RM1153(3.0 cM) | [ | |
Xa27* | 菲律宾小种2、5 | 小粒野生稻 | 6 | M964~M1197(0.052 cM) | EXECUTOR | [ |
xa28(t) | 菲律宾小种2 | Lotasail | - | - | [ | |
Xa29(t) | 菲律宾小种1 | 药用野生稻 | 1 | C904~R596(1.3 cM) | [ | |
Xa30(t) | PXO99 (菲律宾小种6) | 普通野生稻Y238 | 11 | 03STS(2.0 cM) | [ | |
Xa31(t)* | OS105 | 扎昌龙 | 4 | G235~C600(0.2 cM) | NLR | [ |
Xa32(t) | 菲律宾小种1、4~9 | 澳洲野生稻C4064 | 11 | ZCK24(0.5 cM)~RM6293(1.5 cM) | [ | |
xa32(t) | PXO99 (菲律宾小种6) | 疣粒野生稻 | 12 | RM20A(1.7 cM) | [ | |
xa33(t) | 泰国小种TXO16 | Ba7 | 6 | RM30~RM400 | [ | |
Xa33 | IRI-VIII | 普通野生稻、 IRGC105710 | 7 | RMWR7.1(0.9 cM)~RMWR7.6(1.2 cM) | [ | |
xa34(t) | 中国小种5226 | BG1222 | 1 | RM10929~BGID25(204 kb) | [ | |
Xa35(t) | 菲律宾小种PXO61、PXO112等 | 小粒野生稻 | 11 | RM7654(1.1 cM)~RM6293(0.7 cM) | [ | |
Xa36(t) | P6和C5 | C4059 | 11 | RM224~RM2136(4.5 cM) | [ | |
Xa38 | IRI-VII | 普通野生稻IRGC81825 | 4 | RM317~RM562(35 cM) | [ | |
Xa39 | P6和CV | PSBRC66 | 11 | RM26985~DM13(97.4 kb) | [ | |
Xa40 | 朝鲜菌株K1、K2,K3,K3a | IR65482-7-216-1-2 | 11 | RM27320~ID55.WA18-5(80 kb) | [ | |
xa41(t)* | BAI3 | O.glaber-rima | 11 | RM27320~RM27355(220 kb) | SWEET | [ |
xa42 | 6个菲律宾小种、 6个日本小种 | IR24、 | 3 | RM20572~DT46(34.8 kb) | [ | |
Xa43 | 17个韩国菌株K3a(HP01009)等 | JMAGIC系亲本P8 | 11 | IBb27os11_14~S_BB11.ssr_9(119 kb) | [ | |
基因位点 | 无毒菌株(小种) | 供体品种 | 染色体 | 连锁标记 | 蛋白类型 | 参考文献 |
xa44 | 24个韩国菌株K3a(HP01009)等 | JMAGIC系亲本P6 | 11 | #46.g0689400~5.RM27318(120 kb) | [ | |
Xa45* | AXO1974、T7174 | O.nivara | 4 | 53120-F4b-53120-R4b | NLR | [ |
xa45 | 菌株PbXo7 | IRGC102600B | 8 | C8.26737175~C8.26818765(80 kb) | [ | |
Xa46 | IV族隔离株GD9315 | 突变株H120 | 11 | RM26981~RM26984(65.34 kb) | [ | |
Xa47(t)* | C5、C9、P6、PB等 | G252 | 11 | R13I14~13rbq-71 | [ |
基因位点 | 无毒菌株(小种) | 供体品种 | 染色体 | 连锁标记 | 蛋白类型 | 参考文献 |
---|---|---|---|---|---|---|
Xa1* | 日本菌株X-17 | 黄玉、Java14 | 4 | C600(0 cM)、XNpb235(0 cM)、U08750(1.5 cM) | NLR | [ |
Xa2* | 日本菌株X-17 | Te-tep | 4 | HZR950-5~HZR970-4(190 kb)、 G235~C600(0.2 cM) | NLR | [ |
Xa3/Xa26* | 印尼菌株T7174、 T7174等 | 早生爱国3、 明恢63等 | 11 | XNbp181(2.3 cM)、RM224(0.21 cM)、 Y6855R(1.47 cM) | RLK | [ |
Xa4* | 菲律宾菌株PX025(1) | TKM-6、IR20、IR22 | 11 | XNpb181(1.7 cM)、XNpb78(1.7 cM) | WAK | [ |
xa5* | 菲律宾菌株PX025(1) | DZ192、Ir1545-339 | 5 | RG556(<1 cM)、RG207(<1 cM)、 RM122(0.7 cM)、RM390(0.4 cM) | TFIIA | [ |
Xa7* | 菲律宾菌株PX061(1) | DV85、DV86、DZ78 | 6 | G1091(6.0 cM)、AFLP31-10(3 cM)、GDSSR02~RM20593(0.21 cM) | EXECUTOR | [ |
xa8 | 菲律宾菌株PX061(1) | PI231128 | 7 | RM214(19.9 cM) | [ | |
Xa10* | 菲律宾4个小种 | Cas209 | 11 | O072000(5.3 cM)、M491~M419(0.28 cM) | EXECUTOR | [ |
Xa11 | 印尼菌株T7174 | IR944-102-2-3 | 3 | RM347(2.0 cM)、KUX11(1.0 cM) | [ | |
Xa12 | 印尼菌系Xo-7306(V) | 黄玉、Java14 | 4 | - | [ | |
xa13* | 菲律宾小种6 | BJ1 | 8 | RZ28(5.1 cM)、G136(3.8 cM)、RP7~ST12(9.2 kb) | SWEET | [ |
Xa14* | 菲律宾小种5 | TN1 | 4 | RG620(20.1 cM)、HZR970-8~HZR988-1(0.68 cM) | NLR | [ |
基因位点 | 无毒菌株(小种) | 供体品种 | 染色体 | 连锁标记 | 蛋白类型 | 参考文献 |
xa15 | 日本小种Ⅰ、Ⅱ、Ⅲ、Ⅳ | M41诱变体 | - | - | [ | |
Xa16 | 日本小种Ⅶ | Tetep | - | - | [ | |
Xa17 | 日本小种Ⅱ | 阿苏稔 | - | - | [ | |
Xa18 | 缅甸菌株 | IR24、密阳23、丰锦 | - | - | [ | |
xa19 | 6个菲律宾小种 | IR24的诱变体XM5 | - | - | [ | |
xa20 | 6个菲律宾小种 | IR24的诱变体XM6 | - | - | [ | |
Xa21* | 菲律宾小种1、2、4、6 | 长药野生稻 | 11 | RG103(0 cM) | RLK | [ |
Xa22(t) | 菲律宾菌株PXO61 | 扎昌龙 | 11 | CR543(7.1 cM)、RZ536(10.7 cM)、Y6855RA(0.4 cM)、G2132B(0.7 cM) | [ | |
Xa23* | PXO99 (菲律宾小种6) | 普通野生稻 | 11 | C189(0.8 cM)、CP02662(1.3 cM) | EXECUTOR | [ |
xa24(t)* | 菲律宾小种 1、2、4、6 | DV86 | 2 | RM14222~RM14224(10 kb) | 未知蛋白 | [ |
xa25* | 菲律宾小种9 | 明恢63 | 12 | G1314(7.3 cM)、R887(3.0 cM)、MZ2(0.38 cM)、MZ7(0.06 cM) | SWEET | [ |
Xa25(t) | 菲律宾小种1、3、4 | 明恢63、无性系 突变体HX3 | 4 | RM6748(9.3 cM)、RM1153(3.0 cM) | [ | |
Xa27* | 菲律宾小种2、5 | 小粒野生稻 | 6 | M964~M1197(0.052 cM) | EXECUTOR | [ |
xa28(t) | 菲律宾小种2 | Lotasail | - | - | [ | |
Xa29(t) | 菲律宾小种1 | 药用野生稻 | 1 | C904~R596(1.3 cM) | [ | |
Xa30(t) | PXO99 (菲律宾小种6) | 普通野生稻Y238 | 11 | 03STS(2.0 cM) | [ | |
Xa31(t)* | OS105 | 扎昌龙 | 4 | G235~C600(0.2 cM) | NLR | [ |
Xa32(t) | 菲律宾小种1、4~9 | 澳洲野生稻C4064 | 11 | ZCK24(0.5 cM)~RM6293(1.5 cM) | [ | |
xa32(t) | PXO99 (菲律宾小种6) | 疣粒野生稻 | 12 | RM20A(1.7 cM) | [ | |
xa33(t) | 泰国小种TXO16 | Ba7 | 6 | RM30~RM400 | [ | |
Xa33 | IRI-VIII | 普通野生稻、 IRGC105710 | 7 | RMWR7.1(0.9 cM)~RMWR7.6(1.2 cM) | [ | |
xa34(t) | 中国小种5226 | BG1222 | 1 | RM10929~BGID25(204 kb) | [ | |
Xa35(t) | 菲律宾小种PXO61、PXO112等 | 小粒野生稻 | 11 | RM7654(1.1 cM)~RM6293(0.7 cM) | [ | |
Xa36(t) | P6和C5 | C4059 | 11 | RM224~RM2136(4.5 cM) | [ | |
Xa38 | IRI-VII | 普通野生稻IRGC81825 | 4 | RM317~RM562(35 cM) | [ | |
Xa39 | P6和CV | PSBRC66 | 11 | RM26985~DM13(97.4 kb) | [ | |
Xa40 | 朝鲜菌株K1、K2,K3,K3a | IR65482-7-216-1-2 | 11 | RM27320~ID55.WA18-5(80 kb) | [ | |
xa41(t)* | BAI3 | O.glaber-rima | 11 | RM27320~RM27355(220 kb) | SWEET | [ |
xa42 | 6个菲律宾小种、 6个日本小种 | IR24、 | 3 | RM20572~DT46(34.8 kb) | [ | |
Xa43 | 17个韩国菌株K3a(HP01009)等 | JMAGIC系亲本P8 | 11 | IBb27os11_14~S_BB11.ssr_9(119 kb) | [ | |
基因位点 | 无毒菌株(小种) | 供体品种 | 染色体 | 连锁标记 | 蛋白类型 | 参考文献 |
xa44 | 24个韩国菌株K3a(HP01009)等 | JMAGIC系亲本P6 | 11 | #46.g0689400~5.RM27318(120 kb) | [ | |
Xa45* | AXO1974、T7174 | O.nivara | 4 | 53120-F4b-53120-R4b | NLR | [ |
xa45 | 菌株PbXo7 | IRGC102600B | 8 | C8.26737175~C8.26818765(80 kb) | [ | |
Xa46 | IV族隔离株GD9315 | 突变株H120 | 11 | RM26981~RM26984(65.34 kb) | [ | |
Xa47(t)* | C5、C9、P6、PB等 | G252 | 11 | R13I14~13rbq-71 | [ |
[62] |
KIM S. Identification of novel recessive gene xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip[J]. Theoretical and applied genetics, 2018, 131:2733-2743.
doi: 10.1007/s00122-018-3187-2 URL |
[63] |
JI C, JI Z, LIU B, et al. Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors[J]. Plant commun, 2020, 1(4):100087.
doi: 10.1016/j.xplc.2020.100087 URL |
[64] |
NEELAM K, MAHAjAN R, GUPTA V, et al. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t)identified from Oryza glaberrima and transferred to Oryza sativa[J]. Theoretical and applied genetics, 2020, 133(3):689-705.
doi: 10.1007/s00122-019-03501-2 URL |
[65] | SHEN CHEN C W J Y. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120[J]. Scientific reports, 2020. |
[66] | XING J, ZHANG D, YIN F, et al. Identification and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an introgression line of Yuanjiang common wild rice (Oryza rufipogon)[J]. Plant, 2021: S5210939R. |
[67] | 何翔, 翁佳仁. 水稻抗白叶枯病基因研究进展[J]. 安徽农业科学, 2018, 46(10):28-32. |
[68] |
李定琴, 钟巧芳, 曾民, 等. 水稻抗白叶枯病基因定位、克隆及利用研究进展[J]. 中国稻米, 2017, 23(5):19-27.
doi: 10.3969/j.issn.1006-8082.2017.05.004 |
[69] |
ZHANG B, ZHANG H, LI F, et al. Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae[J]. Plant commun., 2020, 1(4):100088.
doi: 10.1016/j.xplc.2020.100088 URL |
[70] |
鲍思元, 谭明谱, 林兴华. 水稻抗白叶枯病基因Xa14的遗传定位[J]. 作物学报, 2010, 36(3):422-427.
doi: 10.3724/SP.J.1006.2010.00422 |
[71] | 王春台, 刘学群, 张端平. 一个新的水稻白叶枯病抗性基因Xa31(t)的鉴定和精细定位[Z].中国北京: 20091. |
[72] | COHEN S P, LIU H, ARGUESO C T, et al. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature[J]. Plos one. 2017, 12(11):e187625. |
[73] | 梅乐. 水稻抗白叶枯病基因Xa7的克隆研究[D]. 杭州: 浙江师范大学, 2020. |
[74] |
ANTOLIN-LLOVERA M, RIED M K, BINDER A, et al. Receptor kinase signaling pathways in plant-microbe interactions[J]. Annual review of phytopathology, 2012, 50:451-473.
doi: 10.1146/annurev-phyto-081211-173002 URL |
[75] | SUN X, CAO Y, YANG Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. Plant Jounal., 2004, 37(4): 517-527. |
[76] |
HU K, CAO J, ZHANG J, et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement[J]. Nat plants., 2017, 3: 17009.
doi: 10.1038/nplants.2017.9 pmid: 28211849 |
[77] | ANDERSON C M, WAGNER T A, PERRET M, et al. WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix[J]. Plant molecular biotechnology, 2001, 47(1-2):197-206. |
[78] |
JI Z, YANG S, ZENG Y, et al. Pyramiding blast, bacterial blight and brown planthopper resistance genes in rice restorer lines[J]. Journal of integrative agriculture, 2016, 15(7):1432-1440.
doi: 10.1016/S2095-3119(15)61165-0 URL |
[79] |
EOM J S, CHEN L Q, SOSSO D, et al. SWEETs, transporters for intracellular and intercellular sugar translocation[J]. Curr opin plant biol., 2015, 25:53-62.
doi: 10.1016/j.pbi.2015.04.005 URL |
[80] |
YUAN M, CHU Z, LI X, et al. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution[J]. Plant cell, 2010, 22(9):3164-3176.
doi: 10.1105/tpc.110.078022 URL |
[81] |
WANG C, ZHANG X, FAN Y, et al. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice[J]. Mol plant, 2015, 8(2):290-302.
doi: 10.1016/j.molp.2014.10.010 pmid: 25616388 |
[1] | 徐坚, 沈颖, 王华弟, 等. 水稻白叶枯病的发生危害与综合防治技术探讨[J]. 中国稻米, 2016, 22(2):65-67. |
[2] |
OU S H. Exploring tropical rice diseases: a reminiscence[J]. Annual review of phytopathology, 1984, 22:1-11.
doi: 10.1146/annurev.py.22.090184.000245 pmid: 22583048 |
[82] |
JIANG G H, XIA Z H, ZHOU Y L, et al. Xa5) in comparison with its homolog TFIIAgamma1[J]. Molecular genetics and genomics, 2006, 275(4): 354-366.
doi: 10.1007/s00438-005-0091-7 URL |
[83] | YUAN M, KE Y, HUANG R, et al. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria[J]. Elife. 2016,5. |
[3] | TAKAHITO N, HISATOSHI K. Growth of Xanthomonas oryzae pv. oryzae in planta and in guttation fluid of rice[J]. Japanese journal of phytopathology. 1999, 65(1). |
[4] |
VOULHOUX R, BALL G, IZE B, et al. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway[J]. The EMBO journal, 2001, 20(23):6735-6741.
doi: 10.1093/emboj/20.23.6735 URL |
[84] | 张海涛, 王石平. 水稻抗病功能基因组研究进展[J]. 生命科学, 2016, 28(10):1189-1199. |
[85] | 窦世娟, 关明俐, 李莉云, 等. 水稻的病程相关基因[J]. 科学通报, 2014, 59(3):245-258. |
[5] | CIANCIOTTO N P, WHITE R C. Expanding role of type II secretion in bacterial pathogenesis and beyond[J]. Infection and immunity, 2017, 85(5). |
[6] |
WHITE F F, POTNIS N, JONES J B, et al. The type III effectors of Xanthomonas[J]. Molecular plant pathology, 2009, 10(6):749-766.
doi: 10.1111/j.1364-3703.2009.00590.x URL |
[86] | DONG W, KAROLINA P, ANGELA H C, et al. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway[J]. Current biology, 2007, 17(20). |
[87] |
DING X, CAO Y, HUANG L, et al. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice[J]. Plant cell, 2008, 20(1):228-240.
doi: 10.1105/tpc.107.055657 pmid: 18192436 |
[7] |
SCHOLZE H, BOCH J. TAL effectors are remote controls for gene activation[J]. Curr opin microbiol., 2011, 14(1):47-53.
doi: 10.1016/j.mib.2010.12.001 pmid: 21215685 |
[8] |
KARATAN E, WATNICK P. Signals, regulatory networks, and materials that build and break bacterial biofilms[J]. Microbiology and molecular biology reviews, 2009, 73(2):310-347.
doi: 10.1128/MMBR.00041-08 pmid: 19487730 |
[88] |
FU J, LIU H, LI Y, et al. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice[J]. Plant physiol., 2011, 155(1):589-602.
doi: 10.1104/pp.110.163774 pmid: 21071600 |
[89] | CHERN M, FITZGERALD H A, CANLAS P E, et al. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light[J]. Molecular plant-microbe interactions, 2005, 18(6). |
[90] | BARI R, JONES J D G. Role of plant hormones in plant defence responses[J]. Plant molecular biology, 2009, 69(4). |
[91] | KE Y, LIU H, LI X, et al. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions[J]. Plant Jounal, 2014, 78(4):619-631. |
[92] | RAMAMOORTHY R, JIANG S, KUMAR N, et al. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments.[J]. Plant & cell physiology, 2008, 49(6). |
[93] | 卜华虎, 王晓清, 任志强, 等. 植物WRKY转录因子家族基因研究进展[J]. 山西农业科学, 2020, 48(7):1158-1163. |
[94] | DEYUN Q, JUN X, WEIBO X, et al. Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance[J]. Molecular plant, 2008, 1(3). |
[95] |
PENG X, HU Y, TANG X, et al. Constitutive expression of rice WRKY30gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5):1485-1498.
doi: 10.1007/s00425-012-1698-7 URL |
[96] | TAO Z, LIU H, QIU D, et al. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions1[J]. Plant physiology, 2009, 151(2). |
[97] | CHOI C, HWANG S, FANG I R, et al. Molecular characterization of Oryza sativa WRKY6, which binds to W-box-like element 1 of the Oryza sativa pathogenesis-related (PR) 10a promoter and confers reduced susceptibility to pathogens[J]. The new phytologist, 2015, 208(3). |
[9] | JA L, DL C. Exopolysaccharides in plant-bacterial interactions[J]. Annual review of microbiology, 1992, 46(1). |
[10] |
JONES J D, DANG J L. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286 URL |
[98] | YING, PENG, LAURA, et al. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas orvzae pv. orvzae in rice[J]. 分子植物:英文版, 2008, 1(3). |
[99] | 翁佳仁. OsmiR1858a靶向OsHIN1正调控水稻白叶枯病抗性[D]. 杭州: 浙江师范大学, 2019. |
[100] | ZHOU X, LIAO H, CHERN M, et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.[J]. Proceedings of the national academy of sciences of the United States of America, 2018, 115(12). |
[101] | CHANG-JIN P, YING P, XUEWEI C, et al. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity[J]. Plos biology, 2008, 6(9). |
[102] | PARK C, WEI T, SHARMA R, et al. Overexpression of rice Auxilin-Like protein, XB21, induces necrotic lesions, up-regulates endocytosis-related genes, and confers enhanced resistance to Xanthomonas oryzae pv. oryzae.[J]. Rice, 2017, 10(1). |
[11] |
MONAGHAN J, ZIPFEL C. Plant pattern recognition receptor complexes at the plasma membrane[J]. Current opinion in plant biology, 2012, 15(4):349-357.
doi: 10.1016/j.pbi.2012.05.006 pmid: 22705024 |
[12] | ALBERTO P M, CYRIL Z. Plant PRRs and the activation of innate immune signaling[J]. Molecular cell, 2014, 54(2). |
[13] |
ZHANG H, WANG S. Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem[J]. Current opinion in plant biology, 2013, 16(2):188-195.
doi: 10.1016/j.pbi.2013.02.008 URL |
[14] | MAYANK A G, JELLI V, CJANDRAMA P U, et al. Plant disease resistance genes: current status and future directions[J]. Physiological and molecular plant Pathology, 2012,78. |
[15] | BIMOLATA W, KUMAR A, M S K, et al. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice[J]. Plos one, 2015, 10(3):e120186. |
[16] | YOSHIMURA S, YAMANOUCHI U, KATAYOSE Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation.[J]. Proceedings of the national academy of sciences of the United States of America, 1998, 95(4). |
[17] |
QI HE D L Y Z. Fine mapping of Xa2, a bacterial blight resistance gene in rice[J]. Molecular breeding, 2006, 17:1-6.
doi: 10.1007/s11032-005-8698-2 URL |
[18] |
XIANG Y, CAO Y, XU C, et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26[J]. Theoretical and applied genetics, 2006, 113(7): 1347-1355.
pmid: 16932879 |
[19] | SUN X, YANG Z, WANG S, et al. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice[J]. TAG. Theoretical and applied genetics, 2003, 106(4). |
[20] |
IYER A S, MCCOUCH S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance[J]. Molecular plant-microbe interactions, 2004, 17(12):1348-1354.
doi: 10.1094/MPMI.2004.17.12.1348 URL |
[21] | JIANG G, XIA Z, ZHOU Y, et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgamma1.[J]. Molecular genetics and genomics, 2006, 275(4). |
[22] | SINGH S, SIDHU J S, HUANG N, et al. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106[J]. Theoretical and applied genetics, 2001, 102(6-7). |
[23] | 梅乐. 水稻抗白叶枯病基因Xa7的克隆研究[D]. 杭州: 浙江师范大学, 2020. |
[24] | YOGESH V, HARLEEN C, RAjIV S, et al. Mapping of bacterial blight resistance gene xa8in rice (Oryza sativa L.)[J]. Indian journal of genetics and plant breeding, 2014, 74(Supplement). |
[25] |
ZENG X, TIAN D, GU K, et al. Genetic engineering of the Xa10 promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae[J]. Plant biotechnol J., 2015, 13(7):993-1001.
doi: 10.1111/pbi.12342 URL |
[26] |
TIAN D, WANG J, ZENG X, et al. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum[J]. Plant cell, 2014, 26(1):497-515.
doi: 10.1105/tpc.113.119255 URL |
[27] | TAKAHIRO G, TADAYUKI M, Naruto F, et al. Mapping of bacterial blight resistance gene Xa11 on rice chromosome 3[J]. Japan agricultural research quarterly, 2009, 43(3). |
[28] | 鲍思元, 谭明谱, 林兴华. 水稻抗白叶枯病基因Xa12区间连锁图的构建[J]. 亚热带植物科学, 2006(3):1-4. |
[29] |
CHU Z, FU B, YANG H, et al. Targeting xa13, a recessive gene for bacterial blight resistance in rice[J]. Theoretical and applied genetics, 2006, 112(3):455-461.
pmid: 16328230 |
[30] |
鲍思元, 谭明谱, 林兴华. 水稻抗白叶枯病基因Xa14的遗传定位[J]. 作物学报, 2010, 36(3):422-427.
doi: 10.3724/SP.J.1006.2010.00422 |
[31] | 章琦. 水稻白叶枯病抗性基因鉴定进展及其利用[J]. 中国水稻科学, 2005(5):453-459. |
[32] | TAKAHITO N, AKIRA O. A new pathogenic race of Xanthomonas campestris pv. oryzae and inheritance of resistance of differential rice variety, te-tep to it[J]. Japanese journal of phytopathology, 1989, 55(2). |
[33] | 宁茜, 张维林, 黄佳男, 等. 来源于疣粒野生稻的白叶枯病新抗源的鉴定[J]. 植物遗传资源学报, 2014, 15(3):620-624. |
[34] | YAMAMOTO T O T. Inheritance of resistance in rice cultivars, T oyonishiki, Milyang 23 and IR 24 to myanmar isolates of bacterial leaf blight pathogen[J]. Japan agricultural research quarterly, 1990, 24(1):74-77. |
[35] | S TAURA T O A Y. Identification of a recessive resistance gene in induced mutant line XM5 of rice to rice bacterial blight[J]. Japanese journal of breeding, 2008, 41(3):427-432. |
[36] | S TAURA T O A Y. ldentification of a recessive resistance gene to rice bacterial blight of mu-tant line XM6, Oryza sativa L.[J]. Japanese journal of breeding, 1992, 42(1):7-13. |
[37] |
SONG W Y, WANG G L, CHEN L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21[J]. Science, 1995, 270(5243):1804-1806.
doi: 10.1126/science.270.5243.1804 URL |
[38] | 汤翠凤, 樊传章, 徐福荣, 等. 采用SSR标记辅助选育具有Xa22(t)的云南高原粳稻新种质[J]. 分子植物育种, 2005(2):173-178. |
[39] |
WANG C, FAN Y, ZHENG C, et al. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23[J]. Molecular genetics and genomics, 2014, 289(5):745-753.
doi: 10.1007/s00438-014-0848-y URL |
[40] | WU X, LI X, XU C, et al. Fine genetic mapping of xa24, a recessive gene for resistance against Xanthomonas oryzae pv. oryzae in rice[J]. Theoretische und angewandte genetik, 2008, 118(1). |
[41] |
CHEN H, WANG S, ZHANG Q. New gene for bacterial blight resistance in rice located on chromosome 12 identified from minghui 63, an elite restorer line[J]. Phytopathology, 2002, 92(7): 750-754.
doi: 10.1094/PHYTO.2002.92.7.750 pmid: 18943271 |
[42] | GAO D Y, LIU A M, ZHOU Y H, et al. Molecular mapping of a bacterial blight resistance gene Xa-25 in rice[J]. Yi chuan xue bao, 2005, 32(2):183-188. |
[43] | GU K, TIAN D, YANG F, et al. High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L.[J]. Theoretische und angewandte Genetik, 2004, 108(5). |
[44] |
GU K, YANG B, TIAN D, et al. R gene expression induced by a type-III effector triggers disease resistance in rice[J]. Nature, 2005, 435(7045):1122-1125.
doi: 10.1038/nature03630 URL |
[45] | LEE K S, RASABANDITH S, ANGELES E R, et al. Inheritance of resistance to bacterial blight in 21 cultivars of rice[J]. Phytopathology, 2003, 3(2):147-152. |
[46] | 谭光轩, 任翔翁, 清妹时, 等. 药用野生稻转育后代一个抗白叶枯病新基因的定位[J]. 遗传学报, 2004(7):724-729. |
[47] | 金旭炜, 王春连, 杨清, 等. 水稻抗白叶枯病近等基因系CBB30的培育及Xa30(t)的初步定位[J]. 中国农业科学, 2007(6):1094-1100. |
[48] |
CHUNTAI WANG, G W X L. Identification and fine mapping of the new bacterial blight resistance gene, Xa31(t), in rice[J]. European journal of plant pathology, 2009, 123(2):235-240.
doi: 10.1007/s10658-008-9356-4 URL |
[49] | 郑崇珂, 王春连, 于元杰, 等. 水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位[J]. 作物学报, 2009, 35(7):1173-1180. |
[50] | 阮辉辉, 严成其, 安德荣, 等. 疣粒野生稻抗白叶枯病新基因xa32(t)的鉴定及其分子标记定位(英文)[J]. 西北农业学报, 2008(6):170-174. |
[51] | S KORINSAK S S P S. Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar 'Ba7'[J]. Maejo international journal of science and technology, 2009, 3(2):235-247. |
[52] |
KUMAR P N, SUjATHA K, LAHA G S, et al. Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae[J]. Phytopathology, 2012, 102(2):222-228.
doi: 10.1094/PHYTO-03-11-0075 URL |
[53] | CHEN S, LIU X, ZENG L, et al. Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv. oryzae.[J]. Theoretische und angewandte Genetik, 2011, 122(7). |
[54] | 郭嗣斌, 张端品, 林兴华. 小粒野生稻抗白叶枯病新基因的鉴定与初步定位[J]. 中国农业科学, 2010, 43(13):2611-2618. |
[55] | 苗丽丽, 王春连, 郑崇珂, 等. 水稻抗白叶枯病新基因的初步定位[J]. 中国农业科学, 2010, 43(15):3051-3058. |
[56] | H BHASIN D B S R. New PCR-based sequence-tagged site marker for bacterial blight resistance gene (t) of rice[J]. Molecular breeding volume, 2012, 30: 607-611. |
[57] |
ZHANG F, ZHUO D L, ZHANG F, et al. Xa39, a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzae pv.oryzae in rice[J]. Plant pathology, 2015, 64(3):568-575.
doi: 10.1111/ppa.12283 URL |
[58] |
KIM S M, SUH J P, QIN Y, et al. Identification and fine-mapping of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.)[J]. Theoretical and applied genetics, 2015, 128(10):1933-1943.
doi: 10.1007/s00122-015-2557-2 URL |
[59] |
HUTIN M, SABOT F, GHESQUIERE A, et al. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice[J]. Plant journal, 2015, 84(4):694-703.
doi: 10.1111/tpj.13042 URL |
[60] |
BUSUNGU C, TAURA S, SAKAGAMI J I, et al. High-resolution mapping and characterization of xa42, a resistance gene against multiple Xanthomonas oryzae pv. oryzae races in rice (Oryza sativa L.)[J]. Breed science, 2018, 68(2):188-199.
doi: 10.1270/jsbbs.17094 URL |
[61] | KIM S, REINKE R F. A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population[J]. Plos one, 2019, 14(2). |
[1] | 白玛仁增, 顿玉多吉, 德例归吉, 德吉央宗, 益西多吉, 边巴次仁. 星-地结合对水稻高温热害监测模型的研究[J]. 中国农学通报, 2023, 39(1): 133-141. |
[2] | 罗先富, 刘文强, 潘孝武, 董铮, 刘三雄, 刘利成, 阳标仁, 盛新年, 李小湘. 应用剩余杂合体衍生的近等基因系定位水稻株高QTL[J]. 中国农学通报, 2022, 38(9): 1-5. |
[3] | 黄钰, 陈斌, 肖关丽. 云南哈尼族地方水稻‘月亮谷’对褐飞虱取食危害的生理反应[J]. 中国农学通报, 2022, 38(9): 123-129. |
[4] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[5] | 王一凡, 劳晓璨, 余丽萍, 叶海龙. 水稻‘甬优15’分期播种的气象条件适宜性试验研究[J]. 中国农学通报, 2022, 38(7): 106-109. |
[6] | 李雪枫, 王坚, 叶晓园, 张秀婷, 王丽学. 苦瓜植株水浸提液对水稻种子萌发和秧苗生长的影响[J]. 中国农学通报, 2022, 38(6): 1-7. |
[7] | 闫蕴韬, 何兮, 张海清, 贺记外. 水稻种子耐贮性研究进展[J]. 中国农学通报, 2022, 38(5): 1-8. |
[8] | 翟彩娇, 张蛟, 崔士友, 陈澎军. 盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J]. 中国农学通报, 2022, 38(4): 1-9. |
[9] | 李荣田, 时柳, 黄丽莹, 刘长华. 利用分子选择培育水稻‘吉粳88’(hd2/hd4)导入系[J]. 中国农学通报, 2022, 38(33): 1-9. |
[10] | 伊嘉雯, 冯棣, 朱崴, 亓娜, 滕奉魁, 卢小引. 不同品种水稻发芽阶段耐盐性对比研究[J]. 中国农学通报, 2022, 38(33): 10-14. |
[11] | 张博, 石峰, 宋福强. AMF复合菌剂对寒地水稻光合作用和生长效应的影响[J]. 中国农学通报, 2022, 38(33): 15-22. |
[12] | 许丹阳, 李虹颖, 孙义祥, 邬刚, 王家宝, 袁嫚嫚, 王佩旋, 张祥明, 束孝海. 不同比例有机无机肥配施对水稻产量与氮素利用率的影响[J]. 中国农学通报, 2022, 38(31): 1-5. |
[13] | 王洋, 张瑞, 周雨晴, 刘永昊, 刘高生, 戴其根. 基于文献计量的国内水稻耐盐性研究态势分析[J]. 中国农学通报, 2022, 38(31): 147-153. |
[14] | 王明, 吴辉, 孙小成, 蒋小军, 雷干农, 陶卫, 柏长青, 徐敏. 孕穗期高温对水稻生理特性和产量性状影响研究[J]. 中国农学通报, 2022, 38(30): 1-5. |
[15] | 陈晴晴, 王春林, 张海珊, 张爱芳. 安徽省水稻区试品种稻瘟病和白叶枯病抗性分析[J]. 中国农学通报, 2022, 38(3): 134-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||