中国农学通报 ›› 2022, Vol. 38 ›› Issue (5): 1-8.doi: 10.11924/j.issn.1000-6850.casb2021-0279
• 农学·农业基础科学 • 下一篇
收稿日期:
2021-03-20
修回日期:
2021-06-13
出版日期:
2022-02-15
发布日期:
2022-03-17
通讯作者:
贺记外
作者简介:
闫蕴韬,男,1994年出生,河北衡水人,博士研究生,研究方向:种子科学与技术。通信地址:410128 湖南长沙芙蓉区农大路一号湖南农业大学,E-mail: 基金资助:
YAN Yuntao(), HE Xi, ZHANG Haiqing, HE Jiwai(
)
Received:
2021-03-20
Revised:
2021-06-13
Online:
2022-02-15
Published:
2022-03-17
Contact:
HE Jiwai
摘要:
水稻种子的耐贮性是关系到粮食贮藏安全和用种安全的重要性状,也是目前从事种子科学研究的学者和种子企业重点关注的性状之一。耐贮性强的水稻种子经过长时间的贮藏仍然具有较高的种子活力,可以更好地解决粮食贮藏和用种安全问题。本综述介绍了种子贮藏过程中发生老化劣变的原因,论述了贮存期间种子内部的生理生化机制与分子损伤机制,归纳了水稻种子耐贮性遗传机理的研究进展,对如何选育耐贮性强的水稻新品种进行了展望。
中图分类号:
闫蕴韬, 何兮, 张海清, 贺记外. 水稻种子耐贮性研究进展[J]. 中国农学通报, 2022, 38(5): 1-8.
YAN Yuntao, HE Xi, ZHANG Haiqing, HE Jiwai. Advances in Research on the Storability of Rice Seeds[J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 1-8.
[1] | 舒在习. 储粮品质变化及其指标应用的探讨[J]. 西部粮油科技, 2001, 26(4):35-37. |
[2] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017(17):2. |
[3] | ANDERSON J D. Metabolic changes as sociated with senscence[J]. Seed science and technology, 1973(1):401-416. |
[4] | 闫慧芳, 毛培胜. 老芒麦种子人工加速老化条件的筛选比较[J]. 种子, 2013, 32(7):1-6. |
[5] | DRAGANIC I, LEKIC S. Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions[J]. Turkish journal of agriculture & forestry, 2014, 36(4):421-428. |
[6] | MCDONALD M B. Seed deterioration physiology, repair and assessment[J]. Seed science and technology, 1999, 1(27):177-237. |
[7] | CALDWELL D W P. Seed vigor and vigor tests[J]. Proceedings of the association of official seed analysts, 1960, 50(1):124-129. |
[8] | 莫青, 吕燕燕, 王彦荣. 箭筈豌豆种子人工加速老化条件筛选的研究[J]. 草业学报, 2017, 26(11):131-138. |
[9] | 胡贵江. 棉籽硬实对加速老化的反应[J]. 种子世界, 1988(1):38-24. |
[10] | 贾风勤, 朱新荣, 张会群. 老化湿度和老化时间对狗尾草种子活力指标的影响[J]. 种子, 2016, 35(7):79-82. |
[11] |
PILLAY D T. Protein synjournal in aging soybean cotyledons. Loss in translational capacity[J]. Biochembiophys res communication, 1977, 79(3):796-804.
doi: 10.1016/0006-291X(77)91182-2 URL |
[12] | BEWLEY J, BRADFORD K, HILHORST H, et al. Seeds: physiology of development, germination and dormancy[M]. (3rd Edition). Springer New York, 2013:341-376. |
[13] | 张兆英. 种子劣变机制研究进展[J]. 沧州师范专科学校学报, 2005(2):89-90. |
[14] |
ERAN A, JEROME S, PATRICIA B, et al. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties[J]. Scientific reports, 2018, 8(1):5155.
doi: 10.1038/s41598-018-23408-0 URL |
[15] | 颜启传, 李稳香. 杂交水稻种子活力与田间生产性能之间的关系[J]. 中国农业科学, 1995, 28(S1):90-98. |
[16] |
RAJJOU L, GALLARDO K, DEBEAUJON I, et al. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination[J]. Plant physiology, 2004, 134(4):1598-1613.
doi: 10.1104/pp.103.036293 URL |
[17] |
LOWENSON J D, CLARKE S. Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypojournal[J]. Journal of biological chemistry, 1992, 267(9):5985-5995.
doi: 10.1016/S0021-9258(18)42652-X URL |
[18] |
OGE L, BOURDAIS G, BOVE J, et al. Protein N repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis[J]. The plant cell, 2008, 20(11):3022-3037.
doi: 10.1105/tpc.108.058479 URL |
[19] |
WEI Y, XU H, DIAO L, et al. Protein repair L-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability[J]. Plant molecular biology, 2015, 89(4-5):475-492.
doi: 10.1007/s11103-015-0383-1 URL |
[20] | 付华, 王彦荣, 余玲. 老化处理对几种牧草种子乙烯释放量的影响[J]. 草业学报, 2001, 10(1):64-70. |
[21] |
KRANNER I, MINIBAYEVA F V, BECKETT R P, et al. What is stress? Concepts, definitions and applications in seed science[J]. New phytologist, 2010, 188(3):655-673.
doi: 10.1111/nph.2010.188.issue-3 URL |
[22] |
SANO N, RAJJOU L, NORTH H M, et al. Staying alive: molecular aspects of seed longevity[J]. Plant cell physiology, 2016, 57(4):660-674.
doi: 10.1093/pcp/pcv186 URL |
[23] | FU Y B, AHMED Z, DIEDERICHSEN A. Towards a better monitoring of seed ageing under ex situ seed conservation[J]. Conservation physiology, 2015, 3(1):cov026. |
[24] |
KUREK K, PLITTA-Michalak B, RATAJCZAK E. Reactive oxygen species as potential drivers of the seed aging process[J]. Plants, 2019, 8(6):174.
doi: 10.3390/plants8060174 URL |
[25] |
CHEN H, CHU P, ZHOU Y, et al. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis[J]. Journal experimental botany, 2012, 63(11):4107-21.
doi: 10.1093/jxb/ers093 URL |
[26] |
PLITTA B P, MICHALAK M, BUJARSKA-BORKOWSKA B, et al. Effect of desiccation on the dynamics of genome-wide DNA methylation in orthodox seeds of acer platanoides L[J]. Plant physical biochemical, 2014, 85:71-77.
doi: 10.1016/j.plaphy.2014.10.014 URL |
[27] | LIU Y, HE J, YAN Y. et al. Comparative transcriptomic analysis of two rice (Oryza sativa L.) Male sterile line seed embryos under accelerated aging[J]. Plant molecular biology, 2020, 38(2):282-293. |
[28] |
LI L, LIN Q, LIU S, et al. Identification of quantitative trait loci for seed storability in rice (Oryza Sativa L.)[J]. Plant breed, 2012, 131(6):739-743.
doi: 10.1111/pbr.2012.131.issue-6 URL |
[29] |
MIURA K, LIN S, YANO M, et al. Mapping quantitative trait loci controlling seed longevity in rice (Oryza Sativa L.)[J]. Theoretical and applied genetics, 2002, 104(6):981-986.
doi: 10.1007/s00122-002-0872-x URL |
[30] |
SASAKI K, FUKUTA K, SATO T. Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage[J]. Plant breeding, 2005, 124(4):361-366.
doi: 10.1111/pbr.2005.124.issue-4 URL |
[31] |
XUE Y, ZHANG S Q, YAO Q H, et al. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.)[J]. Euphytica, 2008, 164(3):739-744.
doi: 10.1007/s10681-008-9696-3 URL |
[32] |
JIANG W, LEE J, JIN T M, et al. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice[J]. Molecules and cells, 2011, 31(4):385-392.
doi: 10.1007/s10059-011-0049-z URL |
[33] | 刘喜, 林秋云, 孙爱玲, 等. 水稻种子耐贮性QTL qSS-9的精细定位[J]. 南京农业大学学报, 2015, 38(6):877-882. |
[34] | 沈圣泉, 庄杰云, 王淑珍, 等. 水稻种子耐贮藏性QTL主效应和上位性效应分析[J]. 分子植物育种, 2005(3):323-328. |
[35] | 柳武革, 王丰, 李金华, 等. 水稻耐储藏特性相关基因的QTL及上位性分析[J]. 作物学报, 2005(12):1672-1675. |
[36] |
ZENG D L, GUO L B, XY Y B, et al. QTL analysis of seed storability in rice[J]. Plant breeding, 2006, 125(1):57-60.
doi: 10.1111/pbr.2006.125.issue-1 URL |
[37] |
HANG N T, LIN Q, LIU L, et al. Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions[J]. Euphytica, 2015, 203(3):673-681.
doi: 10.1007/s10681-014-1304-0 URL |
[38] |
LIN Q, WANG W, REN Y, et al. Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22[J]. Breeding science, 2015, 65(5):411-419.
doi: 10.1270/jsbbs.65.411 URL |
[39] | 任淦, 彭敏, 唐为江, 等. 水稻种子衰老相关基因定位[J]. 作物学报, 2005(2):183-187. |
[40] | KERMODE A R. Approaches to elucidate the basis of desiccation-tolerance in seeds[J]. Seed science ressearch, 1997, 7(2):75-95. |
[41] |
SANO N, RAJJOU J, NORTH H M, et al. Staying alive: molecular aspects of seed longevity[J]. Plant cell physical, 2016, 57(4):660-674.
doi: 10.1093/pcp/pcv186 URL |
[42] |
LI T, ZHANG Y M, WANG D, et al. Regulation of seed vigor by manipulation of raffinose family oligosaccharides in Maize and Arabidopsis thaliana[J]. Molecular plant, 2017, 10(12):1540-155.
doi: 10.1016/j.molp.2017.10.014 URL |
[43] |
DELORGE I, FIGUEROA CM, Feil R, et al. Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis, thaliana[J]. Biochemical Journal, 2015, 466(2):283-290.
doi: 10.1042/BJ20141322 URL |
[44] | KAUR H, PETLA B P, KAMBLE N U, et al. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress[J]. Frontiers in plant science, 2015, 6:713. |
[45] |
KOTAK S, VIERLING E, BAUMLEIN H, et al. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis[J]. Plant cell, 2007, 19(1):182-195.
doi: 10.1105/tpc.106.048165 URL |
[46] |
ALMOGUERA C, PRIETO-DAPENA P, DIAZ-MARTIN J, et al. The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9[J]. BMC plant biology, 2009, 19(9):75.
doi: 10.1186/s12870-019-1678-1 URL |
[47] |
BALDWINIT, SCHMELZEA, ZHANGZP. Effect of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotiana Sylvestris[J]. Journal of chemical ecology, 1996, 22(1):61-74.
doi: 10.1007/BF02040200 URL |
[48] |
SOFO A, DICHIOI B, XILOYANNIS C, et al. Lipoxygenaseactivity and proline accumulation in leaves and roots of olivetreesin response to droughtstress[J]. Physical plant, 2004, 121(1):58-65.
doi: 10.1111/ppl.2004.121.issue-1 URL |
[49] |
MELAN M A, DONG X, ENDARA M E, et al. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisicacid, and methyl jasmonate[J]. Plant physiology, 1993, 101(2):441-450.
doi: 10.1104/pp.101.2.441 URL |
[50] |
ONGENA M, DUBBY F, ROSSOGNOL F, et al. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic pseudomonas strain[J]. Molecular plant-microbe interactions, 2004, 17(9):1009-1018.
doi: 10.1094/MPMI.2004.17.9.1009 URL |
[51] |
SUZUKI Y, ISE K, LI C, et al. Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds[J]. Journal of agricultural and food chemistry, 1999, 47(3):1119-1124.
doi: 10.1021/jf980967a URL |
[52] | 宋美, 吴跃进, 刘斌美. 离子辐照选育水稻LOX-1缺失回复突变体及其对种子寿命的影响[J]. 激光生物学报, 2009, 18(2):230-235. |
[53] | 吴跃进, 吴先山, 沈宗海, 等. 水稻耐储藏种质创新及相关技术研究[J]. 粮食储藏, 2005(1):17-20. |
[54] | 刘南南, 张文伟, 江玲, 等. 水稻脂氧合酶-3基因启动子的特性分析[J]. 南京农业大学学报, 2008(4):1-7. |
[55] | 汪仁, 沈文飚, 江玲, 等. 水稻种子脂氧合酶基因OsLOX1的原核表达、纯化及鉴定[J]. 中国水稻科学, 2008(2):118-124. |
[56] | CAI W L, YAO Y J, YANG C J, et al. Changes in germination and physiochemical properties of transgenic cry1/cry1 ac gene rice during long-term storage[J]. Cereal chemistry, 2011, 149(5):459-462. |
[57] |
SHIN J H, KIM S R, AN G. Rice Aldehyde dehydrogenase7 Is needed for seed maturation and viability[J]. Plant physiology, 2009, 149(2):905-915.
doi: 10.1104/pp.108.130716 URL |
[58] |
VERMA P, KAUR H, PETLA B P, et al. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins[J]. Plant physical, 2013, 161(3):1141-1157.
doi: 10.1104/pp.112.206243 URL |
[59] |
WEI Y D, XU H B, DIAO L R, et al. Protein repairl-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability[J]. Plant molecular biology, 2015, 89(4-5):475-492.
doi: 10.1007/s11103-015-0383-1 URL |
[60] |
LEE J C, KANG S U, JEON Y, et al. Protein L-isoaspartyl methyltransferase regulates p53 activity[J]. Nature communication, 2012, 3(1):927.
doi: 10.1038/ncomms1933 URL |
[61] | NISARGA K N, VEMANNA R S, CHANDRASHEKAR B K, et al. Aldo-ketoreductase 1 (AKR1) improves seed longevity in tobacco and rice by detoxifying reactive cytotoxic compounds generated during ageing[J]. Rice(N Y), 2017, 10(1):11. |
[62] |
SHEN Y, ZHANG Y, YANG C, et al. Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice[J]. Planta, 2012, 235(2):433-441.
doi: 10.1007/s00425-011-1477-x URL |
[63] |
ZHOU Y, CHU P, CHEN H, et al. Overexpression of nelumbo nucifera metallothioneins 2A and 3 enhances seed germination vigor in arabidopsis[J]. Planta, 2012, 235(3):523-537.
doi: 10.1007/s00425-011-1527-4 URL |
[64] |
SEO Y S, KIM E Y, KIM W T. The Arabidopsis sn-1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability[J]. Journal experimental botany, 2011, 62(15):5683-5698.
doi: 10.1093/jxb/err250 URL |
[65] |
CUTLER A J, KROCHKO J E. Formation and breakdown of ABA[J]. Trends plant science, 1999, 4(12):472-478.
doi: 10.1016/S1360-1385(99)01497-1 URL |
[66] |
KUSHIRO T, OKAMOTO M, NAKABAYASHI K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism[J]. The EMBO journal, 2004, 23(7):1647-1656.
doi: 10.1038/sj.emboj.7600121 URL |
[67] |
ZANG G, ZOU H, ZHANG Y, et al. The De-Etiolated 1 homolog of Arabidopsis modulates the ABA signaling pathway and ABA biosynjournal in rice[J]. Plant physiology, 2016, 171(2):1259-1276.
doi: 10.1104/pp.16.00059 URL |
[68] | BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the national academy of sciences of the united states of america, 2006, 103(45):17042-17047. |
[69] |
CHEN H, RUAN J, CHU P, et al. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynjournal in Arabidopsis seeds[J]. The plant journal, 2020, 101(2):310-323.
doi: 10.1111/tpj.v101.2 URL |
[70] |
QUETTIER AL, BERTRAND C, HABRICOT Y, et al. The phs1-3 mutation in a putative dual-specificity protein tyrosine phosphatase gene provokes hypersensitive responses to abscisic acid in Arabidopsis thaliana[J] The plant journal, 2006, 47(5):711-719.
doi: 10.1111/j.1365-313X.2006.02823.x URL |
[71] |
BUESO E, MUNOZ-BERTOMEU J, CAMPOS F, et al. Arabidopsis thaliana homeobox25 uncovers a role for gibberellins in seed longevity[J]. Plant physiology, 2014, 164(2):999-1010.
doi: 10.1104/pp.113.232223 URL |
[72] |
BUESO E, MUNOZ-BERTOMEU J, CMPOS F, et al. Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration[J]. The plant journal, 2016, 87(6):583-596.
doi: 10.1111/tpj.2016.87.issue-6 URL |
[73] | LIU X, ZHANG H, ZHAO Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J]. Proceedings of the national academy of sciences of the united states of america, 2013, 110(38):15485-15490. |
[1] | 赵首萍, 肖文丹, 陈德, 叶雪珠, 张棋, 伍少福, 胡静, 高娜, 黄淼杰. 基于土壤质量和稻米安全的稻田重金属钝化效果评估[J]. 中国农学通报, 2023, 39(8): 51-62. |
[2] | 刘伟喜, 尹文锋, 李小娟, 肖友伦. 旱改水田水稻旱青立病的发生原因及防治措施研究[J]. 中国农学通报, 2023, 39(8): 85-89. |
[3] | 田婷, 张青, 徐雯. 基于无人机多光谱影像的水稻冠层SPAD值预测研究[J]. 中国农学通报, 2023, 39(4): 149-153. |
[4] | 郑健, 芮丹萍, 高贤玉, 张惠云, 宋云连, 潘继红, 余卫霖, 王跃全, 刘思源, 郑平清, 罗心平. 云南永德‘桂味’与区试品种荔枝果实品质表现[J]. 中国农学通报, 2023, 39(4): 44-51. |
[5] | 肖本泽, 王资霖. 转EPSPS基因抗除草剂水稻恢复系的培育及育种评价[J]. 中国农学通报, 2023, 39(2): 8-15. |
[6] | 王思之, 关文灵, 郝晓函, 宋杰. 平铺白珠种子萌发特性研究[J]. 中国农学通报, 2023, 39(1): 77-84. |
[7] | 白玛仁增, 顿玉多吉, 德例归吉, 德吉央宗, 益西多吉, 边巴次仁. 星-地结合对水稻高温热害监测模型的研究[J]. 中国农学通报, 2023, 39(1): 133-141. |
[8] | 罗先富, 刘文强, 潘孝武, 董铮, 刘三雄, 刘利成, 阳标仁, 盛新年, 李小湘. 应用剩余杂合体衍生的近等基因系定位水稻株高QTL[J]. 中国农学通报, 2022, 38(9): 1-5. |
[9] | 黄钰, 陈斌, 肖关丽. 云南哈尼族地方水稻‘月亮谷’对褐飞虱取食危害的生理反应[J]. 中国农学通报, 2022, 38(9): 123-129. |
[10] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[11] | 许昕阳, 张跃建, 沈佳, 寿伟松. 厚皮甜瓜‘翠雪5号’种子破休眠方法研究[J]. 中国农学通报, 2022, 38(7): 41-44. |
[12] | 王一凡, 劳晓璨, 余丽萍, 叶海龙. 水稻‘甬优15’分期播种的气象条件适宜性试验研究[J]. 中国农学通报, 2022, 38(7): 106-109. |
[13] | 李雪枫, 王坚, 叶晓园, 张秀婷, 王丽学. 苦瓜植株水浸提液对水稻种子萌发和秧苗生长的影响[J]. 中国农学通报, 2022, 38(6): 1-7. |
[14] | 翟彩娇, 张蛟, 崔士友, 陈澎军. 盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J]. 中国农学通报, 2022, 38(4): 1-9. |
[15] | 孙悦萍, 周芹, 徐利剑, 任红波, 马文琼, 张晓波, 金海涛, 陈国峰, 刘峰, 董见南. QuEChERS-高效液相色谱-串联质谱法测定水稻中氯虫苯甲酰胺和噻虫胺的残留[J]. 中国农学通报, 2022, 38(36): 126-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||