欢迎访问《中国农学通报》,

中国农学通报 ›› 2023, Vol. 39 ›› Issue (3): 111-118.doi: 10.11924/j.issn.1000-6850.casb2022-0235

• 资源·环境·生态·土壤 • 上一篇    下一篇

盐胁迫下金花菜和紫花苜蓿试管苗的转录组分析及其耐盐基因筛选

洪森荣1,2,3,4(), 朱盈盈1, 李紫莹1, 胡明艳1, 欧阳克蕙5()   

  1. 1 上饶师范学院生命科学学院,江西上饶 334001
    2 上饶农业技术创新研究院,江西上饶 334001
    3 上饶市药食同源植物资源保护与利用重点实验室,江西上饶 334001
    4 上饶市薯芋类作物种质保存与利用重点实验室,江西上饶 334001
    5 江西农业大学动物科学技术学院,南昌 330045
  • 收稿日期:2022-04-01 修回日期:2022-06-15 出版日期:2023-01-25 发布日期:2023-02-01
  • 作者简介:

    洪森荣,男,1974年出生,江西永新人,教授,硕士,主要从事植物生物技术方面的研究。E-mail:

  • 基金资助:
    江西省现代农业产业技术体系建设专项(JXARS-13-赣东站); 上饶市科技局平台载体建设项目(2020I001); 上饶师范学院2022年大学生创新创业训练计划项目(202210416011)

The Plantlets of Medicago polymorpha L. and Medicago sativa L. Under Salt Stress: Transcriptome Analysis and Salt Tolerance Gene Screening

HONG Senrong1,2,3,4(), ZHU Yingying1, LI Ziying1, HU Mingyan1, OUYANG Kehui5()   

  1. 1 College of Life Sciences, Shangrao Normal University, Shangrao, Jiangxi 334001
    2 Shangrao Agricultural Technology Innovation Research Institute, Shangrao, Jiangxi 334001
    3 Key Laboratory of Protection and Utilization of Medicinal and Edible Plant Resources in Shangrao City, Shangrao, Jiangxi 334001
    4 Shangrao Key Laboratory of Germplasm Conservation and Utilization of Potato and Taro Crops, Shangrao, Jiangxi 334001
    5 College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045
  • Received:2022-04-01 Revised:2022-06-15 Online:2023-01-25 Published:2023-02-01

摘要:

为筛选金花菜和紫花苜蓿的耐盐基因,本研究以盐胁迫下的金花菜(JHC)和紫花苜蓿(ZHMX)试管苗为试验材料进行转录组分析。结果表明:金花菜组和紫花苜蓿组差异基因数为26722,金花菜组vs紫花苜蓿组有15850个基因下调,有10872个基因上调。金花菜组和紫花苜蓿组差异基因KEGG富集显著的Pathways有核糖体、光合作用天线蛋白、糖酵解/糖异生、光合作用、苯丙烷生物合成等。金花菜组耐盐基因有碱性亮氨酸拉链43、NAC转录因子47、ABC转运A家族成员7、晚期胚胎发生丰富蛋白2、乙烯反应转录因子ERF110等基因;紫花苜蓿组耐盐基因有WRKY转录因子、蛋白TIFY 8、转录因子MYB13、核运输因子2A、低温盐响应蛋白等基因。本试验结果可为了解金花菜和紫花苜蓿的耐盐分子机制及选育金花菜和紫花苜蓿耐盐新品种提供理论依据。

关键词: 盐胁迫, 金花菜, 紫花苜蓿, 试管苗, 转录组分析, 耐盐基因

Abstract:

In order to screen the salt tolerance genes of Medicago polymorpha L. and Medicago sativa L., the plantlets of Medicago polymorpha L. (JHC) and Medicago sativa L. (ZHMX) under salt stress were used for transcriptome analysis. The results showed that the number of differential genes between JHC group and ZHMX group was 26722. 15850 genes were down regulated and 10872 genes were up regulated in JHC group vs ZHMX group. Pathways with significant enrichment of KEGG gene in JHC group and ZHMX group included ribosome, photosynthesis antenna protein, glycolysis/gluconeogenesis, photosynthesis, phenylpropanoid biosynthesis, etc. Salt tolerance genes in JHC group included basic leucine zipper 43, NAC transcription factor 47, ABC transporter A family member 7, late embryogenesis abundant protein 2, ethylene responsive transcription factor ERF110, etc. The salt tolerance genes in ZHMX group included WRKY transcription factor, protein TIFY 8, transcription factor MYB13, nuclear transport factor 2A, low temperature and salt responsive protein, etc. The results of this experiment could provide a theoretical basis for understanding the molecular mechanism of salt tolerance of Medicago polymorpha L. and Medicago sativa L. and breeding new salt tolerant varieties of Medicago polymorpha L. and Medicago sativa L..

Key words: salt stress, Medicago polymorpha L., Medicago sativa L., plantlet, transcriptome analysis, salt tolerance gene