欢迎访问《中国农学通报》,

中国农学通报 ›› 2024, Vol. 40 ›› Issue (3): 145-151.doi: 10.11924/j.issn.1000-6850.casb2023-0557

• 食品·营养·检测·安全 • 上一篇    下一篇

微生物发酵对刺五加叶黄酮类成分生物合成的影响

姜坤1(), 李玉国1, 张道志1, 徐恒伟1, 冯丹萍1, 孟小茜1, 郑春英2()   

  1. 1 黑龙江省方正林业局有限公司,黑龙江方正 150822
    2 黑龙江大学,生命科学学院,农业微生物技术教育部工程研究中心,黑龙江省寒区植物基因与生物发酵重点实验室,黑龙江省普通高校微生物重点实验室,哈尔滨 150080
  • 收稿日期:2023-04-23 修回日期:2023-07-15 出版日期:2024-01-17 发布日期:2024-01-17
  • 通讯作者:
    郑春英,女,1968年出生,黑龙江哈尔滨人,教授,博士,主要从事食品和药物生物活性挖掘及研发。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,Tel:0451-86608586,E-mail:
  • 作者简介:

    姜坤,男,1970年出生,黑龙江海伦人,高级政工师,研究方向:中药材生物活性挖掘及研发。通信地址:150080 黑龙江省哈尔滨市方正县高楞方正林业局有限公司,Tel:18249788555,E-mail:

  • 基金资助:
    中国龙江森林工业集团补助科技项目“道地药食刺五加深加工技术研究”(2022001)

Effects on Biosythesis of Flavonoids in Acanthopanax senticosus Leaves: Microbial Fermentation

JIANG Kun1(), LI Yuguo1, ZHANG Daozhi1, XU Hengwei1, FENG Danping1, MENG Xiaoqian1, ZHENG Chunying2()   

  1. 1 Heilongjiang Fangzheng Forestry Bureau Co., Ltd., Fangzheng, Heilongjiang 150822
    2 Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education/Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region/Key Laboratory of Microbiology, College of Heilongjiang Province/ School of Life Sciences, Heilongjiang University, Harbin 150080
  • Received:2023-04-23 Revised:2023-07-15 Published-:2024-01-17 Online:2024-01-17

摘要:

旨在高效生产刺五加叶中黄酮类成分。分别采用乳酸杆菌及酿酒酵母发酵刺五加叶,以金丝桃苷及槲皮素为指标,采用HPLC法,观察其发酵后含量的动态变化,并在此基础上,对刺五加叶发酵样品中黄酮成分采用D101大孔树脂柱及硅胶柱色谱进行分离。结果表明,经乳酸杆菌发酵后,刺五加叶中金丝桃苷含量显著降低,由4.00±0.15 (mg/g)降低到1.71±0.09 (mg/g),槲皮素含量显著增加,由0.03± 0.33 (mg/g)增加到0.437±0.15 (mg/g);经酿酒酵母发酵后,其金丝桃苷及槲皮素含量均显著增加,金丝桃苷含量由4.00±0.15 (mg/g)增加到5.97±0.48 (mg/g),槲皮素含量由由0.03±0.33 (mg/g)增加到1.40± 0.65 (mg/g)。经柱色谱分离,从刺五加叶发酵样品中分离得到了金丝桃苷及槲皮素。研究结果可为采用酿酒酵母发酵刺五加叶定向高产金丝桃苷及槲皮素及探讨黄酮类成分生物合成机制提供参考。

关键词: 微生物发酵, 刺五加叶, 黄酮类成分, 金丝桃苷, 槲皮素

Abstract:

The aim is to produce flavonoids in Acanthopanax acanthopanax leaves efficiently. Acanthopanax acanthopanax leaves were fermented by Lactobacillus and Saccharomyces cerevisiae respectively, hypericin and quercetin were used as indexes to observe the dynamic changes of their contents after fermentation by HPLC. On this basis, the flavonoids in Acanthopanax acanthopanax leaves were separated by D101 macroporous resin column and silica gel column chromatography. The results showed that after lactobacillus fermentation, the content of hypericin in Acanthopanax acanthopanax leaves decreased significantly from 4.00±0.15 (mg/g) to 1.71±0.09 (mg/g), and the content of quercetin increased significantly from 0.03±0.33 (mg/g) to 0.437±0.15 (mg/g). The contents of hypericin and quercetin were significantly increased after fermentation with Saccharomyces cerevicae. Hypericin content increased from 4.00±0.15 (mg/g) to 5.97±0.48 (mg/g), quercetin content increased from 0.03±0.33 (mg/g) to 1.40±0.65 (mg/g). Hypericin and quercetin were isolated from fermented Acanthopanax acanthopanax leaves by column chromatography. The results of this study can provide reference for the fermentation of Acanthopanax acanthopanax leaves by Saccharomyces cerevisiae to yield hypericin and quercetin in a directional manner and to explore the biosynthesis mechanism of flavonoids.

Key words: microbial fermentation, Acanthopanax senticosus leaves, flavonoids, hyperoside, quercetin