欢迎访问《中国农学通报》,

中国农学通报 ›› 2024, Vol. 40 ›› Issue (32): 68-76.doi: 10.11924/j.issn.1000-6850.casb2024-0314

• 资源·环境·生态·土壤·气象 • 上一篇    下一篇

热解温度对生物炭物理及化学吸附能力的影响

吕志伟1(), 罗春红2, 李冬梅1, 金梅娟1, 张燕辉1, 陆长婴1, 王海候1()   

  1. 1 江苏太湖地区农业科学研究所/国家土壤质量相城观测实验站,江苏苏州 215100
    2 太仓市沙溪镇农村工作局,江苏太仓 215400
  • 收稿日期:2024-05-07 修回日期:2024-08-24 出版日期:2024-11-15 发布日期:2024-11-12
  • 通讯作者:
    王海候,男,1979年出生,江苏启东人,研究员,硕士,主要从事农业废弃物无害化处置与农田应用方面的研究。通信地址:215100 江苏省苏州市吴中区东山大道2351号,Tel:0512-65380335,Email:
  • 作者简介:

    吕志伟,男,1996年出生,内蒙古包头人,研究实习员,硕士,主要从事农业农村有机废弃物资源化处理与再利用技术方面的研究。通信地址:215100 江苏省苏州市吴中区东山大道2351号,Tel:0512-65380335,Email:

  • 基金资助:
    苏州市农业科学院科研基金项目“生物炭吸附性能对制备参数的响应及其作用机制研究”(23028); 苏州市姑苏乡土人才培养计划科研项目“乡村有机废弃物无害化处置及功能化利用技术创新与应用”(22037)

Effect of Pyrolysis Temperature on Physical and Chemical Adsorption Capacity of Biochar

LV Zhiwei1(), LUO Chunhong2, LI Dongmei1, JIN Meijuan1, ZHANG Yanhui1, LU Changying1, WANG Haihou1()   

  1. 1 Taihu Research Institute of Agricultural Sciences/National Soil Quality Observation and Experimental Station in Xiangcheng, Suzhou, Jiangsu 215100
    2 Rural Work Bureau of Shaxi Town, Taicang City, Taicang, Jiangsu 215400
  • Received:2024-05-07 Revised:2024-08-24 Published:2024-11-15 Online:2024-11-12

摘要:

为明确生物炭物理及化学吸附能力对热解温度的响应特征,并阐明生物炭物理、化学吸附能力与热解温度的量化关系,试验以农林废弃树枝为原料,在热解温度为250、350、450、550、650℃下制备具不同吸附性能的生物炭(以T250、T350、T450、T550、T650命名),测定生物炭碘吸附量(表征物理吸附能力)、亚甲基蓝吸附量(表征化学吸附能力)、芳香性、极性,并利用扫描电镜(SEM)、傅里叶红外光谱(FTIR)对生物炭表观形貌及官能团丰富度进行分析。结果表明:热解温度的升高,提高了生物炭的碘吸附量、降低了生物炭的亚甲基蓝吸附量,T250、T350处理的生物炭表面具有较丰富的含氧官能团,而T450、T550、T650处理的生物炭则拥有更强的芳香性、更低的极性和更加丰富的孔隙结构;生物炭碘吸附量Q1与热解温度x呈增长型“S”曲线关系(P<0.01),回归方程为:Q1=180.78+(447.96-180.78)/[1+10(484.61-x)0.02],R2=0.9991,碘吸附量的极小值、中值、极大值所对应的热解温度分别为318.1、484.6、616.4℃;生物炭亚甲基蓝吸附量Q2与热解温度x呈下降型“S”曲线关系(P<0.01),回归方程为:Q2=5.78+(12.45-5.78)/[1+10(386.78-x)-0.02],R2=0.9920,亚甲基蓝吸附量的极小值、中值、极大值所对应的热解温度分别为511.3、386.8、281.6℃;热解温度每升高50℃生物炭的碘吸附量提高16.7%、亚甲基蓝吸附量降低21.8%。综合吸附原理及特征参数,在不同生产实践场景中,若主要应用以化学吸附作用为主的生物炭,其热解温度推荐值不宜高于386.8℃;若重点发挥生物炭的物理吸附作用,热解温度推荐值不宜低于484.6℃。热解温度介于386.8~484.6℃之间,生物炭物理与化学吸附能力无显著的主次之分。

关键词: 生物炭, 热解温度, 物理吸附, 化学吸附, 碘吸附量, 亚甲基蓝吸附, 定量关系

Abstract:

To elucidate the response characteristics of biochar’s physical and chemical adsorption capacities to pyrolysis temperature and to clarify the quantitative relationship between biochar’s adsorption capabilities and pyrolysis temperature, we carried out the following experiment. In this experiment, biochar samples with different properties were prepared from agricultural and forestry waste branches at five pyrolysis temperatures (250, 350, 450, 550 and 650℃). Each treatment was named T250, T350, T450, T550 and T650, respectively. In this experiment, the physical and chemical adsorption capacity of biochar was reflected by measuring the iodine adsorption capacity and methylene blue adsorption capacity of biochar. Additionally, the aromaticity and polarity of biochar were determined, and the apparent morphology and functional group richness of biochar were analyzed by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The results indicated that the increase of pyrolysis temperature enhanced the biochar’s iodine adsorption capacity while decreased its methylene blue adsorption capacity. The T250 and T350 treatment had abundant oxygen-containing functional groups, while the biochar treated with T450, T550 and T650 had stronger aromaticity, lower polarity and richer pore structure. The relationship between biochar’s iodine adsorption capacity (Q1) and pyrolysis temperature (x) conformed to the growth “S” curve, specifically: Q1=180.78+(447.96-180.78)/[1+10(484.61-x)0.02], R2=0.9991. The minimum, median and maximum values of biochar’s iodine adsorption capacity correspond to pyrolysis temperatures was 318.1, 484.6 and 616.4°C, respectively. The relationship between methylene blue adsorption capacity (Q2) and pyrolysis temperature (x) of biochar conformed to the decreasing “S” curve, specifically (P<0.01): Q2=5.78+(12.45-5.78)/[1+10(386.78-x)-0.02], R2=0.9920. The minimum, median and maximum values of biochar’s methylene blue adsorption capacity correspond to pyrolysis temperatures was 511.3, 386.8 and 284.6°C, respectively. For every 50°C increase in pyrolysis temperature, the average iodine adsorption capacity of biochar increased by 16.7%, while the average methylene blue adsorption capacity decreased by 21.8%. Considering the adsorption principles and characteristic parameters, in different practical production scenarios, if the main application was chemical adsorption-based biochar, the recommended pyrolysis temperature should not exceed 386.8°C. If the focus was on biochar’s physical adsorption function, the recommended pyrolysis temperature should not be lower than 484.6°C. When the pyrolysis temperature is between 386.8 and 484.6°C, there was no significant distinction between the physical and chemical adsorption capabilities of biochar.

Key words: biochar, pyrolysis temperature, physical adsorption, chemical adsorption, iodine adsorption capacity, methylene blue adsorption, quantitative relation