中国农学通报 ›› 2013, Vol. 29 ›› Issue (6): 6-11.doi: 10.11924/j.issn.1000-6850.2012-1239
所属专题: 生物技术
杨美娜 杨瑰丽 郭涛 刘永柱 张建国 陈志强 王慧
收稿日期:
2012-04-01
修回日期:
2012-06-21
出版日期:
2013-02-25
发布日期:
2013-02-25
基金资助:
863计划“云南水稻抗旱高产分子聚合育种”;广东省博士启动基金;广东省科技计划项目
Received:
2012-04-01
Revised:
2012-06-21
Online:
2013-02-25
Published:
2013-02-25
摘要: DNA甲基化作为一种重要的表观遗传现象,通过多种甲基转移酶的作用,能够在不改变DNA序列的情况下调节植物基因组的功能。此外,DNA甲基化能够对多种环境刺激做出迅速的反应,帮助植物应对不同的环境胁迫。由于DNA甲基化的变异可以遗传给后代,这种类似于经典遗传学的特性使其为植物育种中的应用提供了可能。对植物DNA甲基化的特点和变异的发生以及DNA甲基化在植物多种逆境胁迫下的研究进展等方面进行了总结和综述,并探讨了DNA甲基化在植物抗旱性育种中的应用前景。在将来的研究中可利用DNA甲基化/去甲基化抑制剂处理创造突变材料,创造抗旱性新种质;同时深入开展植物DNA甲基化与抗旱机制研究,开发新型甲基化分子标记用于抗旱分子育种实践。
杨美娜 杨瑰丽 郭涛 刘永柱 张建国 陈志强 王慧. 逆境胁迫下植物 DNA甲基化及其在抗旱育种中的研究进展[J]. 中国农学通报, 2013, 29(6): 6-11.
[1] Vanyushin B. DNA Methylation in PlantsDNA Methylation: Basic Mechanisms[J]. Current Topics in Microbiology And Immunology, 2006(301):67-122. [2] 侯夫云,张立明,王庆美,等.植物耐非生物胁迫的分子机制[J].分子植物育种,2007(F11):80-84. [3] 彭海,张静.胁迫与植物 DNA甲基化:育种中的潜在应用与挑战[J].自然科学进展,2009(3):248-256. [4] Lindroth A M, Shultis D, Jasencakova Z, et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with Chromomethylase3[J]. The EMBO Journal,2004,23(21):4146-4155. [5] Goll M G, Bestor T H. Eukaryotic cytosine methyltransferases[J]. Annual Review of Biochemistry,2005,74(1):481-514. [6] Matzke M, Kanno T, Huettel B, et al. Targets of RNA-directed DNA methylation[J]. Current Opinion in Plant BiologyCell Signalling and Gene Regulation-Edited by Jian-Kang Zhu and Ko Shimamoto,2007,10(5):512-519. [7] T K. Epi-Alleles in Plants: Inheritance of Epigenetic Information over Generations[J]. Plant and Cell Physiology,2002,43(10): 1106-1111. [8] Boyko A, Kovalchuk I. Epigenetic control of plant stress response [J]. Environmental and Molecular MutagenesisEnviron. Mol. Mutagen,2008,49(1):61-72. [9] 董国军,郭龙彪,宽藤本,等.栽培稻抗旱性指标的相关研究[J].浙江农业科学,2003(2):24-27. [10] 黑淑梅,慕明涛.DNA甲基化在植物生长发育中的作用[J].安徽农业科学,2007(21):6368-6369. [11] Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA Methylation in Maize Nucleosomes and Demethylation by Environmental Stress [J]. Journal of Biological Chemistry,2002,277(40):37741-37746. [12] Harris G. Molecular biology of DNA methylation[J]. Cell Biochemistry and FunctionCell Biochem. Funct,1987,5(4):309. [13] Bernstein B E, Meissner A, Lander E S. The Mammalian Epigenome[J]. Cell,2007,128(4):669-681. [14] Wada Y, Ohya H, Yamaguchi Y, et al. Preferential de novo methylation of cytosine residues in Non-CpG sequences by a Domains Rearranged DNA methyltransferase from Tobacco Plants [J]. Journal of Biological Chemistry,2003,278(43):42386-42393. [15] Papa C M, Springer N M, Muszynski M G, et al. Maize Chromomethylase Zea methyltransferase2 Is Required for CpNpG Methylation[J]. The Plant Cell Online,2001,13(8):1919-1928. [16] Finnegan E J, Kovac K A. Plant DNA methyltransferases[J]. Plant Molecular Biology,2000,43(2):189-201. [17] Lindroth A M, Cao X, Jackson J P, et al. Requirement of Chromomethylase3 for Maintenance of CpXpG Methylation[J]. Science,2001,292(5524):2077-2080. [18] Tompa R, Mccallum C M, Delrow J, et al. Genome-Wide Profiling of DNA Methylation Reveals Transposon Targets of Chromomethylase3[J]. Current Biology,2002,12(1):65-68. [19] Genger R K, Kovac K A, Dennis E S, et al. Multiple DNA methyltransferase genes in Arabidopsis thaliana[J]. Plant Molecular Biology,1999,41(2):269-278. [20] Zhang H, Zhu J. RNA-directed DNA methylation[J]. Current Opinion in Plant Biology, 2011,14(2):142-147. [21] Cao X, Aufsatz W, Zilberman D, et al. Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation.[J]. Curr Biol,2003,13(24):2212-2217. [22] 孙贝娜.DNA甲基化检测方法的研究进展[J].生命科学仪器,2009 (4):11-14. [23] 冯福德,王树.DNA 甲基化检测研究新进展[J].科学通报,2009(2): 127. [24] Lister R, Ecker J R. Finding the fifth base: Genome-wide sequencing of cytosine methylation[J]. Genome Research,2009(19): 959-966. [25] Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide High-Resolution Mapping and Functional Analysis of DNA Methylation in Arabidopsis[J]. Cell,2006,126(6):1189-1201. [26] Ziberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns[J]. Development,2007,134(22):3959-3965. [27] Johnson D S, Mortazavi A, Myers R M, et al. Genome-wide mapping of in vivo protein-DNA interation[J]. Science,2007,316 (5830):1497-1502. [28] Nautiyal S, Carlton V E H, Lu Y, et al. High-throughput method for analyzing methylation of CpGs in targeted genomic regions[J]. Proceedings of the National Academy of Sciences,2010,107(28): 12587-12592. [29] Wang D, Pan Y, Zhao X, et al. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice[J]. BMC Genomics,2011,12(149):1-15. [30] Chinnusamy V, Zhu J. Epigenetic regulation of stress responses in plants[J]. Current Opinion in Plant Biology,2009,12(2):133-139. [31] Aina R, Sgorbati S, Santagostino A, et al. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp[J]. Physiologia Plantarum,2004,121(3):472-480. [32] Bender J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing[J]. Trends in Biochemical Sciences,1998,23(7):252-256. [33] Labra M, Grassi F, Imazio S, et al. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L.[J]. Chemosphere,2004,54(8):1049-1058. [34] Choi C, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants[J]. Molecular Genetics and Genomics,2007,277(5):589-600. [35] Hashida S, Kitamura K, Mikami T, et al. Temperature shift coordinately changes the activity and the methylaton sate of transposon Tam3 in Antirrhinum majus[J]. Plant Physiology,2003, 132(3):1207-1216. [36] Dyachenko O, Zakharchenko N, Shevchuk T, et al. Effect of hypermethylation of CCWGG sequences in DNA of <i> Mesembryanthemum crystallinum</i> plants on their adaptation to salt stress[J]. Biochemistry (Moscow),2006,71(4): 461-465. [37] Wang W, Zhao X, Pan Y, et al. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress[J]. Journal of Genetics and Genomics. 2011, In Press, Corrected Proof. [38] Tan M. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism[J]. Plant Physiology and Biochemistry,2010,48(1): 21-26. [39] Wang W, Pan Y, Zhao X, et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.)[J]. Journal of Experimental Botany,2010:1-10. [40] 王曾珍,张玉,白史且.植物诱变育种研究进展[J].草业与畜牧,2009 (6):1-5. [41] Ou X, Long L, Zhang Y, et al. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.) [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2009, 662(1-2):44-53. [42] 史金铭,黄磊,李文建,等.低剂量重离子辐射对水稻种子和幼苗DNA甲基化的影响[J].激光生物学报,2009,18(5):641-643. [43] Lukens L N, Zhan S. The plant genome's methylation status and response to stress: implications for plant improvement[J]. Current Opinion in Plant Biology,2007,10(3):317-322. [44] Yang S, Vanderbeld B, Wan J, et al. Narrowing Down the Targets: Towards Successful Genetic Engineering of Drought-Tolerant Crops [J]. Molecular Plant.2010,3(3):469-490. [45] Riddle N C, Richards E J. The Control of Natural Variation in Cytosine Methylation in Arabidopsis [J]. Genetics,2002,162(1): 355-363. [46] Miura K, Agetsuma M, Kitano H, et al. A metastable DWARF1 epigenetic mutant affecting plant stature in rice[J]. Proceedings of the National Academy of Sciences,2009,106(27):11218-11223. [47] Wang H, Feng Q, Zhang M, et al. Alteration of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) pure-lines and inter-line F1 hybrids following low-dose laser irradiation[J]. Journal of Photochemistry and Photobiology B: Biology,2010,99(3): 150-153. [48] Finnegan E J, Peacock W J, Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development [J]. Proceedings of the National Academy of Sciences,1996,93(16): 8449-8454. [49] Finnegan E J, Sheldon C C, Jardinaud F, et al. A Cluster of Arabidopsis Genes with a Coordinate Response to an Environmental Stimulus[J]. Current Biology,2004,14(10):911-916. [50] 仪治本,孙毅,牛天堂,等.高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究[J].作物学报,2005(9):1138-1143. [51] 付晓兰,李雪峰.DNA 甲基化与细胞分化[J].广西农业生物科学, 2006(D09):135-139. [52] 赵云雷,叶武威,王俊娟,等.DNA 甲基化与植物抗逆性研究进展[J].西北植物学报,2009(7):1479-1489. |
[1] | 金梅娟, 佘旭东, 沈明星, 陆长婴, 陶玥玥, 王海候. 稻田构建垄型土槽耦合基质栽培草莓的生产效应研究[J]. 中国农学通报, 2023, 39(1): 71-76. |
[2] | 周冬冬, 张军, 葛梦婕, 刘忠红, 朱晓欢, 李春燕. 不同氮肥处理对稻茬晚播小麦‘淮麦36’产量、氮素利用率和品质的影响[J]. 中国农学通报, 2023, 39(1): 1-7. |
[3] | 王福玉, 陈贵菊, 孙雷明, 黄玲, 邵敏敏, 赵凯, 杨本洲, 张玉丹, 闫璐, 王霖. 耕作方式与施氮量互作对小麦生长、产量与品质的影响[J]. 中国农学通报, 2022, 38(9): 20-26. |
[4] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[5] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[6] | 王强强, 杨自辉, 郭树江, 张剑挥, 王多泽. 灌水量对民勤干旱沙区骏枣生长和产量的影响[J]. 中国农学通报, 2022, 38(9): 71-74. |
[7] | 周小红. 基于多元回归分析的农作物产量估测模型研究[J]. 中国农学通报, 2022, 38(8): 152-156. |
[8] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[9] | 武志斌, 黄超, 雷媛, 敬峰, 刘战东. 不同产量水平下冬小麦水肥利用特性研究[J]. 中国农学通报, 2022, 38(8): 64-71. |
[10] | 郑本川, 张锦芳, 蒋俊, 崔成, 柴靓, 黄友涛, 周正鉴, 李浩杰, 蒋梁材. 不同熟期“川油”系列甘蓝型油菜品种主要性状与产量的相关分析[J]. 中国农学通报, 2022, 38(7): 7-17. |
[11] | 付焱焱, 李云峰, 韩冬, 马树庆. 吉林省粮食主产区玉米生长季水分盈亏及其对产量的影响[J]. 中国农学通报, 2022, 38(7): 99-105. |
[12] | 钮力亚, 王伟伟, 张玉洁, 邹景伟, 王志, 陆莉, 王奉芝, 王伟, 于亮. 小麦品质性状及产量性状对馒头面条评分的影响[J]. 中国农学通报, 2022, 38(6): 129-133. |
[13] | 姚金保, 杨学明, 周淼平, 张鹏. 江苏省小麦参试品种(系)产量与产量构成因素分析[J]. 中国农学通报, 2022, 38(6): 15-19. |
[14] | 田艺心, 高凤菊, 曹鹏鹏, 高祺. 黄淮海夏大豆干物质积累、转运及产量对播期的响应特征[J]. 中国农学通报, 2022, 38(6): 20-25. |
[15] | 董红业, 徐婷, 刘文豪, 李强, 柳延涛. 新疆塔里木盆地东南缘花生主要农艺性状的分析与综合评价[J]. 中国农学通报, 2022, 38(6): 26-30. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 7
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||