中国农学通报 ›› 2021, Vol. 37 ›› Issue (24): 31-38.doi: 10.11924/j.issn.1000-6850.casb2020-0517
万一兵(), 唐岚岚, 展茗(
), 尚春辉, 袁嘉仪, 秦明广
收稿日期:
2020-09-29
修回日期:
2020-12-18
出版日期:
2021-08-25
发布日期:
2021-08-27
通讯作者:
展茗
作者简介:
万一兵,男,1997年出生,重庆人,学士,研究生,研究方向:不同种植制度农田碳、氮循环调控。通信地址:100081 北京市海淀区中关村南大街12号25号楼,Tel:15207113903,E-mail: 基金资助:
Wan Yibing(), Tang Lanlan, Zhan Ming(
), Shang Chunhui, Yuan Jiayi, Qin Mingguang
Received:
2020-09-29
Revised:
2020-12-18
Online:
2021-08-25
Published:
2021-08-27
Contact:
Zhan Ming
摘要:
为深入认识玉米根系分泌碳、氮规律及其与根系特征的关系,以玉米品种‘迪卡653’为材料,采用土培-水培相结合的方法,测定了玉米根系形态指标和根系分泌物中碳、氮的含量。结果表明,玉米根系碳、氮分泌比强度(EIroot-C、EIroot-N)在生育前期高于生育后期,与比根长、比根表面积、比根体积呈显著正线性相关,而与根系C/N比呈显著负线性相关;玉米单株碳、氮分泌强度(EIplant-C、EIplant-N)在生育期内呈先升高后降低的趋势,累积分泌碳15.71 g/plant,累积分泌氮0.75 g/plant;EIplant-C与根长、根表面积、根体积、根干重、根冠比、叶面积之间均存在极显著二次曲线关系,而EIplant-N仅与根冠比之间有显著二次曲线关系。依据玉米根系特征与根系分泌碳、氮的定量关系,可为估算大田种植下玉米根系分泌碳、氮量提供参考。
中图分类号:
万一兵, 唐岚岚, 展茗, 尚春辉, 袁嘉仪, 秦明广. 玉米根系分泌碳、氮动态及与根系特征的关系[J]. 中国农学通报, 2021, 37(24): 31-38.
Wan Yibing, Tang Lanlan, Zhan Ming, Shang Chunhui, Yuan Jiayi, Qin Mingguang. Dynamics of Carbon and Nitrogen in Root Exudation and Their Relations with Root Traits in Maize[J]. Chinese Agricultural Science Bulletin, 2021, 37(24): 31-38.
[1] |
Phillips R P, Finzi A C, Bernhardt E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2fumigation[J]. Ecology Letters, 2011, 14(2):187-194.
doi: 10.1111/j.1461-0248.2010.01570.x pmid: 21176050 |
[2] |
Yin H, Li Y, Xiao J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimentalwarming[J]. Global Change Biology, 2013, 19(7):2158-2167.
doi: 10.1111/gcb.12161 URL |
[3] | Nieder R, Schollmayer G, Richter J. Denitrification in the rooting zone of cropped soils with regard to methodology and climate: A review[J]. Biology and Fertility of Soils, 1989, 8(3):219-226. |
[4] |
Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Review[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(4):421-431.
doi: 10.1002/(ISSN)1522-2624 URL |
[5] |
Kuzyakov Y, Schneckenberger K. Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation[J]. Archives of Agronomy and Soil Science, 2004, 50(1):115-132.
doi: 10.1080/03650340310001627658 URL |
[6] |
Wichern F, Mayer J, Joergensen R G, et al. Rhizodeposition of C and N in peas and oats after 13C-15N double labelling under field conditions[J]. Soil Biology and Biochemistry, 2007, 39(10):2527-2537.
doi: 10.1016/j.soilbio.2007.04.022 URL |
[7] | 杨兰芳, 蔡祖聪. 玉米生长和施氮水平对土壤有机碳更新的影响[J]. 环境科学学报, 2006(02):280-286. |
[8] |
Wichern F, Eberhardt E, Mayer J, et al. Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects[J]. Soil Biology and Biochemistry, 2008, 40(1):30-48.
doi: 10.1016/j.soilbio.2007.08.010 URL |
[9] | 鄢来斌, 马义兵, 张福锁. 根际中碳和氮的输入及转化[J]. 土壤, 1993(5):242-245. |
[10] |
Lynch J M, Whipps J M. Substrate flow in the rhizosphere[J]. Plant and Soil, 1990, 129(1):1-10.
doi: 10.1007/BF00011685 URL |
[11] |
De Nobili M, Contin M, Mondini C, et al. Soil microbial biomass is triggered into activity by trace amounts of substrate[J]. Soil Biology and Biochemistry, 2001, 33(9):1163-1170.
doi: 10.1016/S0038-0717(01)00020-7 URL |
[12] |
Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6):837-843.
doi: 10.1016/S0038-0717(03)00123-8 URL |
[13] |
Kuzyakov Y. Priming effects: interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 2010, 42(9):1363-1371.
doi: 10.1016/j.soilbio.2010.04.003 URL |
[14] |
Mayer J, Buegger F, Jensen E S, et al. Estimating N rhizodeposition of grain legumes using a 15N in situ stem labelling method[J]. Soil Biology and Biochemistry, 2003, 35(1):21-28.
doi: 10.1016/S0038-0717(02)00212-2 URL |
[15] | 孙悦, 徐兴良, Yakov K. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(01):62-75. |
[16] | 祝贞科, 沈冰洁, 葛体达, 等. 农田作物同化碳输入与周转的生物地球化学过程[J]. 生态学报, 2016, 36(19):5987-5997. |
[17] | 吴彩霞, 傅华. 根系分泌物的作用及影响因素[J]. 草业科学, 2009, 26(09):24-29. |
[18] |
Badri D V, Vivanco J M. Regulation and function of root exudates[J]. Plant Cell and Environment, 2008, 32(6):666-681.
doi: 10.1111/pce.2009.32.issue-6 URL |
[19] |
Darwent M J, Paterson E, Mcdonald A J S, et al. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration[J]. Journal of Experimental Botany, 2003, 54(381):325-334.
pmid: 12493860 |
[20] |
Tuckmantel T, Leuschner C, Preusser S, et al. Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environment[J]. Soil Biology and Biochemistry, 2017, 107:188-197.
doi: 10.1016/j.soilbio.2017.01.006 URL |
[21] |
Xiong D, Huang J, Yang Z, et al. The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand[J]. Forest Ecology and Management, 2020, 458:117793.
doi: 10.1016/j.foreco.2019.117793 URL |
[22] |
De Graaff M, Six J, Van Kessel C. Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen[J]. New Phytologist, 2007, 173(4):778-786.
doi: 10.1111/nph.2007.173.issue-4 URL |
[23] |
Sun L, Ataka M, Kominami Y, et al. Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest[J]. Tree Physiology, 2017, 37(8):1011-1020.
doi: 10.1093/treephys/tpx026 URL |
[24] |
Bowsher A W, Evans S E, Tiemann L K, et al. Effects of soil nitrogen availability on rhizodeposition in plants: a review[J]. Plant and Soil, 2018, 423(1):59-85.
doi: 10.1007/s11104-017-3497-1 URL |
[25] |
Xu J G, Juma N G. Relations of shoot C, root C and root length with root-released C of two barley cultivars and the decomposition of root-released C in soil[J]. Canadian Journal of Soil Science, 1994, 74(1):17-22.
doi: 10.4141/cjss94-002 URL |
[26] |
Groleaurenaud V, Plantureux S, Guckert A. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions[J]. Plant and Soil, 1998, 201(2):231-239.
doi: 10.1023/A:1004316416034 URL |
[27] | 李淑娅, 田少阳, 袁国印, 等. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究[J]. 作物学报, 2015, 41(10):1537-1547. |
[28] | Szoboszlay M. Studies on the effects of plant variety and root exudate compounds on the soil microbial community[D]. University of Kentucky, 2015. |
[29] | 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015:202-204. |
[30] |
Weintraub M N, Scott-Denton L E, Schmidt S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem[J]. Oecologia, 2007, 154(2):327-338.
pmid: 17657512 |
[31] | 何敏毅, 孟凡乔, 史雅娟, 等. 用13C脉冲标记法研究玉米光合碳分配及其向地下的输入[J]. 环境科学, 2008,(02):2446-2453. |
[32] |
Meng F, Dungait J A J, Zhang X, et al. Investigation of photosynthate-C allocation 27 days after 13C-pulse labeling of Zea mays L. at different growth stages[J]. Plant and Soil, 2013, 373(1):755-764.
doi: 10.1007/s11104-013-1841-7 URL |
[33] | 孙昭安, 陈清, 韩笑, 等. 13C脉冲标记法定量冬小麦光合碳分配及其向地下的输入[J]. 环境科学, 2018, 39(6):2837-2844. |
[34] | 申建波, 张福锁, 毛达如. 根际微生态系统中的碳循环[J]. 植物营养与肥料学报, 2001(2):232-240. |
[35] |
Jensen E S. Rhizodeposition of N by pea and barley and its effect on soil N dynamics[J]. Soil Biology and Biochemistry, 1996, 28(1):65-71.
doi: 10.1016/0038-0717(95)00116-6 URL |
[36] |
Jones D L, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist, 2004, 163(3):459-480.
doi: 10.1111/nph.2004.163.issue-3 URL |
[37] |
Meier I C, Tuckmantel T, Heitkotter J, et al. Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity[J]. New Phytologist, 2020, 226(2):583-594.
doi: 10.1111/nph.16389 pmid: 31868933 |
[38] |
Paterson E, Sim A. Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra[J]. Journal of Experimental Botany, 2000, 51(349):1449-1457.
pmid: 10944159 |
[39] |
Ma Z, Guo D, Xu X, et al. Evolutionary history resolves global rganization of root functional traits[J]. Nature, 2018, 555(7694):94-97.
doi: 10.1038/nature25783 URL |
[40] | Karst J, Gaster J, Wiley E, et al. Stress differentially causes roots of tree seedlings to exude carbon[J]. Tree Physiology, 2016, 37(2):154-164. |
[41] |
Dilkes N B, Jones D L, Farrar J. Temporal dynamics of carbon partitioning and rhizodeposition in wheat[J]. Plant Physiology, 2004, 134(2):706-715.
pmid: 14764904 |
[42] |
Farrar J, Hawes M C, Jones D L, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003, 84(4):827-837.
doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2 URL |
[43] | 郭婉玑, 张子良, 刘庆, 等. 根系分泌物收集技术研究进展[J]. 应用生态学报, 2019, 30(11):3951-3962. |
[44] |
Li X, Dong J, Chu W, et al. Adsorption efficiency of a continuous trapping system and its use for the collection of root exudates from cucumber[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(6):963-975.
doi: 10.1002/jpln.201500294 URL |
[45] |
Puschenreiter M, Wenzel W W, Wieshammer G, et al. Novel micro-suction-cup design for sampling soil solution at defined distances from roots[J]. Journal of Plant Nutrition and Soil Science, 2005, 168(3):386-391.
doi: 10.1002/(ISSN)1522-2624 URL |
[46] |
Wadhwa K, Narula N. A novel technique to collect root exudates from mustard (Brassica juncea)[J]. Journal of Basic Microbiology, 2012, 52(5):613-615.
doi: 10.1002/jobm.201100407 pmid: 22144042 |
[1] | 周冬冬, 张军, 葛梦婕, 刘忠红, 朱晓欢, 李春燕. 不同氮肥处理对稻茬晚播小麦‘淮麦36’产量、氮素利用率和品质的影响[J]. 中国农学通报, 2023, 39(1): 1-7. |
[2] | 段青青, 韩梅梅, 谭月强, 张自坤. 补光时间和光质对温室甜椒叶片生长、碳代谢的影响[J]. 中国农学通报, 2023, 39(1): 37-44. |
[3] | 王绍新, 王宝宝, 李中建, 许洛, 冯健英. 中国鲜食玉米的研究脉络和趋势探析[J]. 中国农学通报, 2023, 39(1): 8-15. |
[4] | 王福玉, 陈贵菊, 孙雷明, 黄玲, 邵敏敏, 赵凯, 杨本洲, 张玉丹, 闫璐, 王霖. 耕作方式与施氮量互作对小麦生长、产量与品质的影响[J]. 中国农学通报, 2022, 38(9): 20-26. |
[5] | 纪坤, 王彬, 赵博文, 薛浩, 吴建民, 朱晓建, 王依欣, 赵海军, 韩赞平. 不同玉米种质材料植株与穗粒性状的灰色关联度分析[J]. 中国农学通报, 2022, 38(9): 27-32. |
[6] | 洪波, 张泽, 张强, 马怡茹, 易翔, 吕新. 基于数码图像的棉花叶片氮含量估测研究[J]. 中国农学通报, 2022, 38(9): 49-55. |
[7] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[8] | 黄浩, 谢晋, 袁文彬, 王初亮, 陈坤华, 曾繁东, 梁增发, 苏诏, 王维. 不同有机物料对烤烟根系特征及氮磷钾积累量的影响[J]. 中国农学通报, 2022, 38(8): 51-57. |
[9] | 赵双梅, 刘宪斌, 李红梅, 董文彩, 沈健萍, 包金美, 梁芳, 鲁美. 云南哀牢山湿性常绿阔叶林土壤碳分布特征[J]. 中国农学通报, 2022, 38(8): 88-95. |
[10] | 付焱焱, 李云峰, 韩冬, 马树庆. 吉林省粮食主产区玉米生长季水分盈亏及其对产量的影响[J]. 中国农学通报, 2022, 38(7): 99-105. |
[11] | 张洪芬, 杨丽杰, 赵玉娟, 张峰. 陇东2020年“强凉夏”气候特征及对农业影响分析[J]. 中国农学通报, 2022, 38(5): 117-123. |
[12] | 白苇, 胡杨, 胡卿卿, 崔金丽, 张宝英, 杨素梅. 冀北油葵主要栽培因素对产量的影响[J]. 中国农学通报, 2022, 38(5): 17-22. |
[13] | 王彦, 朱凯迪, 孙洪仁, 张吉萍, 吕玉才, 王剑. 中国苹果土壤养分丰缺指标与适宜施肥量初步研究[J]. 中国农学通报, 2022, 38(5): 69-78. |
[14] | 朱小聪. 汾河流域植被生产力时空变异特征分析[J]. 中国农学通报, 2022, 38(5): 86-93. |
[15] | 李锐, 尚霄, 尚春树, 常利芳, 闫蕾, 白建荣. SSR荧光检测解析224份山西玉米自交系的遗传结构与遗传关系[J]. 中国农学通报, 2022, 38(5): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||