中国农学通报 ›› 2022, Vol. 38 ›› Issue (17): 35-43.doi: 10.11924/j.issn.1000-6850.casb2021-1142
所属专题: 生物技术
收稿日期:
2021-11-29
修回日期:
2022-03-05
出版日期:
2022-06-15
发布日期:
2022-07-08
通讯作者:
田立荣
作者简介:
徐明昱,女,1996年出生,河北栾城人,在读硕士,研究方向:藻类光合作用。通信地址:050024 河北石家庄市裕华区南二环东路20号 河北师范大学生命科学学院,Tel:0311-80787512,E-mail: 基金资助:
XU Mingyu1(), BAI Tianyu1, WANG Jiayue1, TIAN Lirong1,2(
)
Received:
2021-11-29
Revised:
2022-03-05
Online:
2022-06-15
Published:
2022-07-08
Contact:
TIAN Lirong
摘要:
为了深入了解缺铁胁迫对藻类光合作用的影响,本文归纳了铁在光合电子传递链中的重要作用,总结了铁缺乏对藻类光合原件的破坏作用以及藻类的光合响应机制。围绕光合电子传递链,对容易受到铁缺乏影响的叶绿素、光系统、捕光天线等光合元件进行了归纳总结。研究得出,缺铁胁迫严重破坏藻类叶绿素的生物合成,影响光系统I(PSI)、光系统II(PSII)及其外周捕光天线的含量、活性和蛋白稳定性。藻类通过在光系统周围产生新的铁诱导蛋白或功能替代蛋白,调整光系统与捕光天线之间的结构与功能,应对缺铁胁迫。
中图分类号:
徐明昱, 白天宇, 王佳悦, 田立荣. 藻类响应缺铁胁迫的光合机制研究进展[J]. 中国农学通报, 2022, 38(17): 35-43.
XU Mingyu, BAI Tianyu, WANG Jiayue, TIAN Lirong. Photosynthetic Mechanism of Algae in Response to Iron Deficiency Stress: Research Progress[J]. Chinese Agricultural Science Bulletin, 2022, 38(17): 35-43.
物种 | 光合响应元件 | 主要功能 | 参考文献 |
---|---|---|---|
蓝细菌(Synechocystis sp. PCC 6803) | IsiA IsiB | 在铁限制条件下作为PSI天线 替代含铁的铁氧还蛋白进行电子传递 | [ [ |
蓝细菌(S. elongatus PCC 6301) | IdiA | 保护PSII受体侧免受氧化应激 | [ |
盐生杜氏藻(Dunaliella salina) | Tidi | 帮助PSI捕获光能 | [ |
衣藻(Chlamydomonas reinhardtii) | LHCI PsaC/PsaD PsaE LhcSR3 | 帮助PSI捕获光能 PSI中FA和FB的载脂蛋白 稳定PsaC和PSI核心之间的相互作用 参与NPQ过程,保护光合装置免受氧化损伤 | [ [ [ [ |
硅藻(Phaeodactylum tricornutum) (Thalassiosira oceanica) | PSI Cyt b6f | 将光能转化为化学能 介导PSII和PSI之间的电子传递,缺铁时PSI和Cyt b6f表达量下调 | [ [ |
物种 | 光合响应元件 | 主要功能 | 参考文献 |
---|---|---|---|
蓝细菌(Synechocystis sp. PCC 6803) | IsiA IsiB | 在铁限制条件下作为PSI天线 替代含铁的铁氧还蛋白进行电子传递 | [ [ |
蓝细菌(S. elongatus PCC 6301) | IdiA | 保护PSII受体侧免受氧化应激 | [ |
盐生杜氏藻(Dunaliella salina) | Tidi | 帮助PSI捕获光能 | [ |
衣藻(Chlamydomonas reinhardtii) | LHCI PsaC/PsaD PsaE LhcSR3 | 帮助PSI捕获光能 PSI中FA和FB的载脂蛋白 稳定PsaC和PSI核心之间的相互作用 参与NPQ过程,保护光合装置免受氧化损伤 | [ [ [ [ |
硅藻(Phaeodactylum tricornutum) (Thalassiosira oceanica) | PSI Cyt b6f | 将光能转化为化学能 介导PSII和PSI之间的电子传递,缺铁时PSI和Cyt b6f表达量下调 | [ [ |
[1] |
MORGAN J W, ANDERS E. Chemical composition of earth, venus, and mercury[J]. Proc natl acad sci U S A, 1980, 77(12):6973-6977.
doi: 10.1073/pnas.77.12.6973 URL |
[2] |
RATLEDGE C, DOVER L G. Iron metabolism in pathogenic bacteria[J]. Annu rev microbiol, 2000, 54(1):881-941.
doi: 10.1146/annurev.micro.54.1.881 URL |
[3] |
ALLEN A E, LAROCHE J, MAHESWARI U, et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation[J]. Proc natl acad sci U S A, 2008, 105(30):10438-10443.
doi: 10.1073/pnas.0711370105 URL |
[4] |
GREENE R M, GEIDER R J, KOLBER Z, et al. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae[J]. Plant physiol, 1992, 100(2):565-575.
doi: 10.1104/pp.100.2.565 URL |
[5] | 岳丽娟. 铁胁迫对豌豆幼苗铁代谢、光合作用及抗氧化系统的影响[D]. 兰州: 兰州大学, 2009. |
[6] |
MOREL F M, PRICE N M. The biogeochemical cycles of trace metals in the oceans[J]. Science, 2003, 300(5621):944-947.
doi: 10.1126/science.1083545 URL |
[7] | PILON M, ABDEL-GHANY S E, HOEWYK D V, et al. Biogenesis of iron-sulfur cluster proteins in plastids[J]. Genet eng, 2006, 27(1):101-117. |
[8] | GEIDER R J, GREENE R M, KOLBER Z, et al. Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North Atlantic[J]. Deep sea res part I oceanogr, 1993, 40(6):1205-1224. |
[9] | COUTURIER J, TOURAINE B, BRIAT J F, et al. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions[J]. Front plant sci, 2013, 4(259):259. |
[10] | 李丽娅. 铁(Ⅲ)螯合物还原酶在植物铁代谢中的作用研究[D]. 哈尔滨: 哈尔滨师范大学, 2011. |
[11] | DEVADASU E, PANDEY J, DHOKNE K, et al. Restoration of photosynthetic activity and supercomplexes from severe iron starvation in Chlamydomonas reinhardtii[J]. Biochim biophys acta, 2021, 1862(1):148331. |
[12] | 吴慧兰, 王宁, 凌宏清. 植物铁吸收、转运和调控的分子机制研究进展[J]. 植物学通报, 2007(6):779-788. |
[13] | 李利敏, 吴良欢, 马国瑞. 樟树失绿黄化症的研究[J]. 土壤通报, 2009, 40(1):158-161. |
[14] | 申红芸, 熊宏春, 郭笑彤, 等. 植物吸收和转运铁的分子生理机制研究进展[J]. 植物营养与肥料学报, 2011, 17(6):1522-1530. |
[15] | 周晓今, 陈茹梅, 范云六. 植物对铁元素吸收、运输和储存的分子机制[J]. 作物研究, 2012, 26(5):605-610. |
[16] |
BRUMBAROVA T, BAUER P, IVANOV R. Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends plant sci, 2015, 20(2):124-133.
doi: 10.1016/j.tplants.2014.11.004 URL |
[17] | BRIAT J F, ROUACHED H, TISSOT N, et al. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1)[J]. Front plant sci, 2015, 6(1):290. |
[18] | 李俊成, 于慧, 杨素欣, 等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报, 2016, 52(6):835-842. |
[19] | 董晓雨, 郝梦琪, 郭东林. 黄色条纹/黄色条纹样蛋白与植物中的铁转运功能[J]. 中国生物化学与分子生物学报, 2017, 33(9):886-892. |
[20] | 云少君, 赵广华. 植物铁代谢及植物铁蛋白结构与功能研究进展[J]. 生命科学, 2012, 24(8):809-816. |
[21] | 张妮娜, 上官周平, 陈娟. 植物应答缺铁胁迫的分子生理机制及其调控[J]. 植物营养与肥料学报, 2018, 24(5):1365-1377. |
[22] |
MUNEER S, JEONG B R, KIM T H, et al. Transcriptional and physiological changes in relation to Fe uptake under conditions of Fe-deficiency and Cd-toxicity in roots of Vigna radiata L[J]. J Plant res, 2014, 127(6):731-742.
doi: 10.1007/s10265-014-0660-0 URL |
[23] | MURGIA I, GIACOMETTI S, BALESTRAZZI A, et al. Analysis of the transgenerational iron deficiency stress memory in Arabidopsis thaliana plants[J]. Front plant sci, 2015, 6(745):1-12. |
[24] | 王金贝. 缺铁、缺硼对两种杨树生理特性的影响[D]. 武汉: 华中农业大学, 2013. |
[25] | 金龙飞. 基于组学的柑橘缺铁及硼胁迫分子响应研究[D]. 武汉: 华中农业大学, 2017. |
[26] |
MURGIA I, GIACOMETTI S, BALESTRAZZI A, et al. The phycobilisome, a light-harvesting complex responsive to environmental conditions[J]. Microbiol rev, 1993, 57(3):725-749.
doi: 10.1128/mr.57.3.725-749.1993 URL |
[27] | YADAVALLI V, NELLAEPALLI S, SUBRAMANYAM R. Proteomic analysis of thylakoid membranes[J]. Methods mol biol, 2011, 684(1):159-170. |
[28] |
STRZEPEK R F, HARRISON P J. Photosynthetic architecture differs in coastal and oceanic diatoms[J]. Nature, 2004, 431(7009):689-692.
doi: 10.1038/nature02954 URL |
[29] |
GUIKEMA J A, SHERMAN L A. Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation[J]. Plant physiol, 1983, 73(2):250-256.
doi: 10.1104/pp.73.2.250 URL |
[30] |
LI Q, HUISMAN J, BIBBY T S, et al. Biogeography of cyanobacterial isiA genes and their link to iron availability in the ocean[J]. Front microbiol, 2019, 10(1):650.
doi: 10.3389/fmicb.2019.00650 URL |
[31] |
SCHOFFMAN H, BROWN W M, PALTIEL Y, et al. Structure-based hamiltonian model for IsiA uncovers a highly robust pigment-protein complex[J]. J r soc interface, 2020, 17(169):20200399.
doi: 10.1098/rsif.2020.0399 URL |
[32] |
KOURIL R, ARTENI A A, LAX J, et al. Structure and functional role of supercomplexes of IsiA and photosystem I in cyanobacterial photosynthesis[J]. Febs lett, 2005, 579(15):3253-3257.
doi: 10.1016/j.febslet.2005.03.051 URL |
[33] | ZHANG Y, CHEN M, CHURCH W B, et al. The molecular structure of the IsiA-photosystem I supercomplex, modelled from high-resolution, crystal structures of photosystem I and the CP43 protein[J]. Biochim biophys acta, 2010, 1797(4):457-465. |
[34] |
ZHAO J, LI R, BRYANT D A. Measurement of photosystem I activity with photoreduction of recombinant flavodoxin[J]. Anal biochem, 1998, 264(2):263-270.
doi: 10.1006/abio.1998.2845 URL |
[35] |
JEANJEAN R, ZUTHER E, YEREMENKO N, et al. A photosystem I psaFJ-null mutant of the cyanobacterium Synechocystis PCC 6803 expresses the isiAB operon under iron replete conditions[J]. Febs Lett, 2003, 549(1-3):52-56.
doi: 10.1016/S0014-5793(03)00769-5 URL |
[36] |
FALK S, SAMSON G, BRUCE D, et al. Functional analysis of the iron-stress induced CP 43' polypeptide of PSII in the cyanobacterium Synechococcus sp. PCC 7942[J]. Photosynth res, 1995, 45(1):51-60.
doi: 10.1007/BF00032235 URL |
[37] |
POLYVIOU D, MACHELETT M M, HITCHCOCK A, et al. Structural and functional characterization of IdiA/FutA (Tery_3377), an iron-binding protein from the ocean diazotroph Trichodesmium erythraeum[J]. J biol chem, 2018, 293(47):18099-18109.
doi: 10.1074/jbc.RA118.001929 URL |
[38] |
MICHEL K P, THOLE H H, PISTORIUS E K. IdiA, a 34 kDa protein in the cyanobacteria Synechococcus sp. strains PCC 6301 and PCC 7942, is required for growth under iron and manganese limitations[J]. Microbiology, 1996, 142(9):2635-2645.
doi: 10.1099/00221287-142-9-2635 URL |
[39] |
YOUSEF N, PISTORIUS E K, MICHEL K P. Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants[J]. Arch microbiol, 2003, 180(6):471-483.
doi: 10.1007/s00203-003-0618-4 URL |
[40] |
VARSANO T, WOLF S G, PICK U. A chlorophyll a/b-binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina[J]. J biol chem, 2006, 281(15):10305-10315.
doi: 10.1074/jbc.M511057200 URL |
[41] |
MOSELEY J L, ALLINGER T, HERZOG S, et al. Adaptation to Fe-deficiency requires remodeling of the photosynthetic apparatus[J]. Embo j, 2002, 21(24):6709-6720.
doi: 10.1093/emboj/cdf666 URL |
[42] |
YADAVALLI V, JOLLEY C C, MALLEDA C, et al. Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii[J]. Plos one, 2012, 7(4):e35084.
doi: 10.1371/journal.pone.0035084 URL |
[43] | BONENTE G, BALLOTTARI M, TRUONG T B, et al. Analysis of LHCSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii[J]. PloS biol, 2011, 9(1):e1000577. |
[44] |
TOKUTSU R, MINAGAWA J. Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii[J]. Proc natl acad sci U S A, 2013, 110(24):10016-10021.
doi: 10.1073/pnas.1222606110 URL |
[45] |
ZHAO P, GU W, HUANG A, et al. Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis[J]. J Phycol, 2018, 54(1):34-43.
doi: 10.1111/jpy.12607 URL |
[46] |
BOWLER C, ALLEN A E, BADGER J H, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7219):239-244.
doi: 10.1038/nature07410 URL |
[47] |
PETROU K, HASSLER C S, DOBLIN M A, et al. Iron-limitation and high light stress on phytoplankton populations from the Australian Ssub-antarctic zone (saz)[J]. Deep sea res part II top stud oceanogr, 2011, 58(21):2200-2211.
doi: 10.1016/j.dsr2.2011.05.020 URL |
[48] |
YADAVALLI V, NEELAM S, RAO A S, et al. Differential degradation of photosystem I subunits under iron deficiency in rice[J]. J plant physiol, 2012, 169(8):753-759.
doi: 10.1016/j.jplph.2012.02.008 URL |
[49] |
MSILINI N, ZAGHDOUDI M, GOVINDACHARY S, et al. Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor QA- to QB by iron deficiency[J]. Photosyn res, 2011, 107(3):247-256.
doi: 10.1007/s11120-011-9628-2 URL |
[50] |
NAUMANN B, BUSCH A, ALLMER J, et al. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii[J]. Proteomics, 2007, 7(21):3964-3979.
doi: 10.1002/pmic.200700407 URL |
[51] |
DEVADASU E, CHINTHAPALLI D K, CHOUHAN N, et al. Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency[J]. Photosynth res, 2019, 139(1-3):253-266.
doi: 10.1007/s11120-018-0580-2 URL |
[52] |
SINGH A K, LI H, BONO L, et al. Novel adaptive responses revealed by transcription profiling of a Synechocystis sp. PCC 6803 delta-isiA mutant in the presence and absence of hydrogen peroxide[J]. Photosynth res, 2005, 84(1-3):65-70.
doi: 10.1007/s11120-004-6429-x URL |
[53] |
SPILLER S, TERRY N. Limiting factors in photosynthesis: II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units[J]. Plant physiol, 1980, 65(1):121-125.
doi: 10.1104/pp.65.1.121 URL |
[54] |
DEVADASU E R, MADIREDDI S K, NAMA S, et al. Iron deficiency cause changes in photochemistry, thylakoid organization, and accumulation of photosystem II proteins in Chlamydomonas reinhardtii[J]. Photosynth res, 2016, 130(1-3):469-478.
doi: 10.1007/s11120-016-0284-4 URL |
[55] |
BOEKEMA E J, HIFNEY A, YAKUSHEVSKA A E, et al. A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria[J]. Nature, 2001, 412(6848):745-748.
doi: 10.1038/35089104 URL |
[56] |
YEREMENKO N, KOURIL R, IHALAINEN J A, et al. Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria[J]. Biochemistry, 2004, 43(32):10308-10313.
doi: 10.1021/bi048772l URL |
[57] |
CHAUHAN D, FOLEA I M, JOLLEY C C, et al. A novel photosynthetic strategy for adaptation to low-iron aquatic environments[J]. Biochemistry, 2011, 50(5):686-692.
doi: 10.1021/bi1009425 URL |
[58] |
MA F, ZHANG X, ZHU X, et al. Dynamic changes of IsiA-containing complexes during long-term iron defificiency in Synechocystis sp. PCC 6803[J]. Mol plant, 2017, 10:143-154.
doi: 10.1016/j.molp.2016.10.009 URL |
[59] |
TOPORIK H, LI J, WILLIAMS D, et al. The structure of the stress-induced photosystem I-IsiA antenna supercomplex[J]. Nat struct mol biol, 2019, 26(6):443-449.
doi: 10.1038/s41594-019-0228-8 URL |
[60] |
AKITA F, NAGAO R, KATO K, et al. Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins[J]. Commun biol, 2020, 3(1):232.
doi: 10.1038/s42003-020-0949-6 URL |
[61] |
MELKOZERNOV A N, BIBBY T S, LIN S, et al. Time-resolved absorption and emission show that the CP43' antenna ring of iron-stressed synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core[J]. Biochemistry, 2003, 42(13):3893-3903.
doi: 10.1021/bi026987u URL |
[62] |
NIELD J, MORRIS E P, BIBBY T S, et al. Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency[J]. Biochemistry, 2003, 42(11):3180-3188.
doi: 10.1021/bi026933k URL |
[63] |
SUN J, GOLBECK J H. The presence of the IsiA-PSI supercomplex leads to enhanced photosystem I electron throughput in iron-starved cells of Synechococcus sp. PCC 7002[J]. J phys chem b, 2015, 119(43):13549-13559.
doi: 10.1021/acs.jpcb.5b02176 URL |
[64] |
SINGH A K, SHERMAN L A. Reflections on the function of IsiA, a cyanobacterial stress-inducible, chl-binding protein[J]. Photosynth res, 2007, 93(1-3):17-25.
doi: 10.1007/s11120-007-9151-7 URL |
[65] |
SCHOFFMAN H, KEREN N. Function of the IsiA pigment-protein complex in vivo[J]. Photosynth res, 2019, 141(3):343-353.
doi: 10.1007/s11120-019-00638-5 URL |
[66] | LAX J E, ARTENI A A, BOEKEMA E J, et al. Structural response of photosystem 2 to iron deficiency: characterization of a new photosystem 2-IdiA complex from the cyanobacterium Thermosynechococcus elongatusbp-1 Biochim biophys acta, 2007, 1767(6):528-534. |
[67] |
MICHEL K P, EXSS-SONNE P, SCHOLTEN-BECK G, et al. Immunocytochemical localization of IdiA, a protein expressed under iron or manganese limitation in the mesophilic cyanobacterium Synechococcus PCC 6301 and the thermophilic cyanobacterium Synechococcus elongatus[J]. Planta, 1998, 205(1):73-81.
doi: 10.1007/s004250050298 URL |
[68] |
MICHEL K P, PISTORIUS E K. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA[J]. Physiol plant, 2004, 120(1):36-50.
doi: 10.1111/j.0031-9317.2004.0229.x URL |
[69] |
EXSS-SONNE P, TöLLE J, BADER K P, et al. The IdiA protein of Synechococcus sp. PCC 7942 functions in protecting the acceptor side of photosystem II under oxidative stress[J]. Photosynth res, 2000, 63(2):145-157.
doi: 10.1023/A:1006322925324 URL |
[70] |
ZURBRIGGEN M D, TOGNETTI V B, CARRILLO N. Stress-inducible flavodoxin from photosynthetic microorganisms. the mystery of flavodoxin loss from the plant genome[J]. Iubmb Life, 2007, 59(4-5):355-360.
doi: 10.1080/15216540701258744 URL |
[71] |
HAREL A, BROMBERG Y, FALKOWSKI P G, et al. Evolutionary history of redox metal-binding domains across the tree of life[J]. Proc natl acad sci US A, 2014, 111(19):7042-7047.
doi: 10.1073/pnas.1403676111 URL |
[72] |
PIERELLA KARLUSICH J J, CECCOLI R D, GRAñA M, et al. Environmental selection pressures related to iron utilization are involved in the loss of the flavodoxin gene from the plant genome[J]. Genome biol evol, 2015, 7(3):750-767.
doi: 10.1093/gbe/evv031 URL |
[73] |
CAO P, CAO D, SI L, et al. Structural basis for energy and electron transfer of the photosystem I-IsiA-flavodoxin supercomplex[J]. Nat plants, 2020, 6(2):167-176.
doi: 10.1038/s41477-020-0593-7 URL |
[74] |
PIERELLA KARLUSICH J J, LODEYRO A F, CARRILLO N. The long goodbye: the rise and fall of flavodoxin during plant evolution[J]. J exp bot, 2014, 65(18):5161-5178.
doi: 10.1093/jxb/eru273 URL |
[75] |
NAWROCKI W J, BAILLEUL B, PICOT D, et al. The mechanism of cyclic electron flow[J]. Biochim biophys acta bioenerg, 2019, 1860(5):433-438.
doi: 10.1016/j.bbabio.2018.12.005 URL |
[76] |
IVANOV A G, PARK Y I, MISKIEWICZ E, et al. Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942[J]. Febs Lett, 2000, 485(2-3):173-177.
doi: 10.1016/S0014-5793(00)02211-0 URL |
[77] | BAILEY S, MELIS A, MACKEY K R, et al. Alternative photosynthetic electron flow to oxygen in marine Synechococcus[J]. Biochim biophys acta, 2008, 1777(3):269-276. |
[78] |
HOCKIN N L, MOCK T, MULHOLLAND F, et al. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants[J]. Plant physiol, 2012, 158(1):299-312.
doi: 10.1104/pp.111.184333 URL |
[79] | MORRISSEY J, BOWLER C. Iron utilization in marine cyanobacteria and eukaryotic algae[J]. Front microbiol, 2012, 3(43):1-13. |
[80] |
MARCHETTI A, CASSAR N. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications[J]. Geobiology, 2009, 7(4):419-431.
doi: 10.1111/j.1472-4669.2009.00207.x URL |
[81] | GROUNEVA I, JAKOB T, WILHELM C, et al. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana[J]. Biochim biophys acta, 2009, 1787(7):929-938. |
[82] |
GOSS R, JAKOB T. Regulation and function of xanthophyll cycle-dependent photoprotection in algae[J]. Photosynth res, 2010, 106(1-2):103-122.
doi: 10.1007/s11120-010-9536-x URL |
[83] |
KROH G E, PILON M. Regulation of iron homeostasis and use in chloroplasts[J]. Int j mol sci, 2020, 21(9):3395.
doi: 10.3390/ijms21093395 URL |
[1] | 邓裕帅, 王宇光, 於丽华, 耿贵. 水涝胁迫对不同土壤盐碱度下甜菜幼苗生长及光合特性的影响[J]. 中国农学通报, 2022, 38(7): 18-23. |
[2] | 肖文敏, 张虹, 任志红, 吴焕焕, 杨圣祥, 王俊杰, 孙海伟. 遮光颜色对夏季北方茶园的影响[J]. 中国农学通报, 2022, 38(4): 36-45. |
[3] | 张博, 石峰, 宋福强. AMF复合菌剂对寒地水稻光合作用和生长效应的影响[J]. 中国农学通报, 2022, 38(33): 15-22. |
[4] | 王月敏, 柯玉琴, 谢榕榕, 李春英, 李文卿. 喷施微肥对定位施肥烟株成熟期生理代谢的影响[J]. 中国农学通报, 2022, 38(31): 24-30. |
[5] | 王建波, 王继丰, 付晓玲, 钟海秀, 刘赢男, 倪红伟. CO2浓度升高条件下不同氮素水平对小叶章光合特性和生长的影响[J]. 中国农学通报, 2022, 38(17): 44-50. |
[6] | 王贵平, 薛晓敏, 赵红强, 陈汝, 韩雪平, 王金政. ‘富士’苹果不套袋与套袋密度对树体光合特性的影响[J]. 中国农学通报, 2022, 38(13): 54-59. |
[7] | 王明泉, 付立新, 李国良, 扈光辉, 任洪雷, 胡少新, 杨剑飞, 刘畅, 龚士琛. 玉米抗感种质资源苗期耐盐性的光合作用机制研究[J]. 中国农学通报, 2021, 37(5): 8-14. |
[8] | 包佳婧, 孔德胤. 河套灌区脱水青红椒终霜冻气象指标研究[J]. 中国农学通报, 2021, 37(30): 77-82. |
[9] | 廖婷, 付琳, 郭丽琴, 刘国彬, 王烨, 姚砚武, 曹均. 洒金柏色素变化及光合作用响应特征[J]. 中国农学通报, 2021, 37(29): 56-63. |
[10] | 覃芳, 史艳财, 秦惠珍, 邹蓉, 蒋运生, 熊忠臣. 3个‘金槐’品种的生理特性比较[J]. 中国农学通报, 2021, 37(18): 38-43. |
[11] | 王翊豪, 李世昌, 刘春路, 赵艳丽, 郑国伟, 徐福荣. 不同产地滇重楼光合作用能力探究[J]. 中国农学通报, 2021, 37(16): 59-64. |
[12] | 王园园, 张红香, 金成吉, 穆春生. 磷肥对紫花苜蓿生产力影响的研究概述[J]. 中国农学通报, 2020, 36(35): 72-77. |
[13] | 周润泽, 王翊豪, 马晓惠, 崔志莹, 郑国伟, 徐福荣. 低温对不同年限三七中的皂苷含量及光合生理的影响[J]. 中国农学通报, 2020, 36(34): 71-75. |
[14] | 邓 波,智永祺,郑玉红①,周 坚,张鹏翀. 模拟冬春季温度变化对石蒜光合作用的影响[J]. 中国农学通报, 2019, 35(26): 69-74. |
[15] | 周娜娜,冯素萍,高新生,罗鑫,武耀廷. 植物光合作用的光抑制研究进展[J]. 中国农学通报, 2019, 35(15): 116-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||