中国农学通报 ›› 2022, Vol. 38 ›› Issue (2): 133-140.doi: 10.11924/j.issn.1000-6850.casb2021-0188
所属专题: 生物技术
刘李岚(), 邱钦勤, 樊文容, 唐娇, 胡小兵, 肖伟, 陈珂(
)
收稿日期:
2021-03-01
修回日期:
2021-07-01
出版日期:
2022-01-15
发布日期:
2022-02-25
通讯作者:
陈珂
作者简介:
刘李岚,女,1997年出生,四川广安人,本科,研究方向:农业健康与生物修复。通信地址:621010 四川省绵阳市涪城区青义镇西南科技大学东九科技园,E-mail: 基金资助:
LIU Lilan(), QIU Qinqin, FAN Wenrong, TANG Jiao, HU Xiaobing, XIAO Wei, CHEN Ke(
)
Received:
2021-03-01
Revised:
2021-07-01
Online:
2022-01-15
Published:
2022-02-25
Contact:
CHEN Ke
摘要:
研究旨在基于响应曲面法优化探讨碱性电解水(Alkaline electrolyzed water, BEW)对采后果蔬表面农残去除的调控方案,以期相关研究结果能为果蔬采后清洗加工处理提供有价值的参考。试验以市售无籽八月桔为研究对象,采用酶抑制率法测定果蔬表面的有机磷农药残留。选择BEW稀释比、浸泡时间、浸泡体积为自变量,以酶抑制率为响应值,利用Box-Behnken实验设计与响应曲面法优化了去除有机磷农残的稀释比-浸泡时间-浸泡体积工艺参数,建立了处理后酶抑制率的二次回归方程的预测模型,研究了每个自变量及其交互作用对酶抑制率的影响。结果表明,BEW稀释比、浸泡时间、浸泡体积均显著影响了采后柑橘表面的有机磷农药去除效果;优化后的最佳处理工艺条件为稀释比1:8.49、浸泡时间1.26 min、浸泡体积为388.45 mL,酶抑制率为40%。经试验验证,平均酶抑制率为40.59%,相对误差仅为1.48%,表明实际值与模型预测值拟合性良好。因此,碱性电解水在最佳处理工艺条件下,具有良好的去除果蔬表面有机磷农药残留物的能力。
中图分类号:
刘李岚, 邱钦勤, 樊文容, 唐娇, 胡小兵, 肖伟, 陈珂. 碱性电解水去除水果表面有机磷农残的工艺研究[J]. 中国农学通报, 2022, 38(2): 133-140.
LIU Lilan, QIU Qinqin, FAN Wenrong, TANG Jiao, HU Xiaobing, XIAO Wei, CHEN Ke. The Removal Process of Organophosphorus Pesticide Residues on the Surface of Commercial Fruits by Alkaline Electrolyzed Water[J]. Chinese Agricultural Science Bulletin, 2022, 38(2): 133-140.
处理 | BEW稀释比(V/V) | 处理时间/(min) | 处理体积/mL | 酶抑制率/% |
---|---|---|---|---|
1 | 1:5 | 3 | 200 | 37.32±2.88 |
2 | 1:5 | 1 | 200 | 15.08±2.29 |
3 | 1:9 | 3 | 300 | 11.55±1.25 |
4 | 1:9 | 2 | 200 | 20.84±0.72 |
5 | 1:9 | 2 | 400 | 43.65±2.27 |
6 | 1:5 | 2 | 300 | 23.54±2.57 |
7 | 1:5 | 2 | 300 | 19.91±0.47 |
8 | 1:1 | 2 | 200 | 55.41±1.94 |
9 | 1:9 | 1 | 300 | 11.15±6.94 |
10 | 1:5 | 2 | 300 | 20.83±2.96 |
11 | 1:1 | 3 | 300 | 51.45±1.93 |
12 | 1:5 | 1 | 400 | 42.89±5.13 |
13 | 1:5 | 3 | 400 | 45.05±6.02 |
14 | 1:1 | 2 | 400 | 68.42±4.02 |
15 | 1:1 | 1 | 300 | 17.53±1.21 |
16 | 1:5 | 2 | 300 | 24.03±5.01 |
17 | 1:5 | 2 | 300 | 20.62±2.94 |
处理 | BEW稀释比(V/V) | 处理时间/(min) | 处理体积/mL | 酶抑制率/% |
---|---|---|---|---|
1 | 1:5 | 3 | 200 | 37.32±2.88 |
2 | 1:5 | 1 | 200 | 15.08±2.29 |
3 | 1:9 | 3 | 300 | 11.55±1.25 |
4 | 1:9 | 2 | 200 | 20.84±0.72 |
5 | 1:9 | 2 | 400 | 43.65±2.27 |
6 | 1:5 | 2 | 300 | 23.54±2.57 |
7 | 1:5 | 2 | 300 | 19.91±0.47 |
8 | 1:1 | 2 | 200 | 55.41±1.94 |
9 | 1:9 | 1 | 300 | 11.15±6.94 |
10 | 1:5 | 2 | 300 | 20.83±2.96 |
11 | 1:1 | 3 | 300 | 51.45±1.93 |
12 | 1:5 | 1 | 400 | 42.89±5.13 |
13 | 1:5 | 3 | 400 | 45.05±6.02 |
14 | 1:1 | 2 | 400 | 68.42±4.02 |
15 | 1:1 | 1 | 300 | 17.53±1.21 |
16 | 1:5 | 2 | 300 | 24.03±5.01 |
17 | 1:5 | 2 | 300 | 20.62±2.94 |
来源 | 方差和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 4654.04 | 9 | 517.12 | 76.15 | < 0.0001 | *** |
A | 1394.45 | 1 | 1394.45 | 205.34 | < 0.0001 | *** |
B | 431.00 | 1 | 431.00 | 63.47 | < 0.0001 | *** |
C | 636.53 | 1 | 636.53 | 93.73 | < 0.0001 | *** |
AB | 280.90 | 1 | 280.90 | 41.36 | 0.0004 | ** |
AC | 24.01 | 1 | 24.01 | 3.54 | 0.1021 | — |
BC | 100.80 | 1 | 100.80 | 14.84 | 0.0063 | ** |
A2 | 181.44 | 1 | 181.44 | 26.72 | 0.0013 | ** |
B2 | 124.17 | 1 | 124.17 | 18.28 | 0.0037 | ** |
C2 | 1477.03 | 1 | 1477.03 | 217.50 | < 0.0001 | *** |
残差 | 47.54 | 7 | 6.79 | |||
失拟项 | 33.63 | 3 | 11.21 | 3.22 | 0.1438 | — |
误差 | 13.90 | 4 | 3.48 | |||
总拟差 | 4701.58 | 16 | ||||
R2 | 0.9899 | |||||
Radj2 | 0.9769 |
来源 | 方差和 | 自由度 | 均方 | F值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 4654.04 | 9 | 517.12 | 76.15 | < 0.0001 | *** |
A | 1394.45 | 1 | 1394.45 | 205.34 | < 0.0001 | *** |
B | 431.00 | 1 | 431.00 | 63.47 | < 0.0001 | *** |
C | 636.53 | 1 | 636.53 | 93.73 | < 0.0001 | *** |
AB | 280.90 | 1 | 280.90 | 41.36 | 0.0004 | ** |
AC | 24.01 | 1 | 24.01 | 3.54 | 0.1021 | — |
BC | 100.80 | 1 | 100.80 | 14.84 | 0.0063 | ** |
A2 | 181.44 | 1 | 181.44 | 26.72 | 0.0013 | ** |
B2 | 124.17 | 1 | 124.17 | 18.28 | 0.0037 | ** |
C2 | 1477.03 | 1 | 1477.03 | 217.50 | < 0.0001 | *** |
残差 | 47.54 | 7 | 6.79 | |||
失拟项 | 33.63 | 3 | 11.21 | 3.22 | 0.1438 | — |
误差 | 13.90 | 4 | 3.48 | |||
总拟差 | 4701.58 | 16 | ||||
R2 | 0.9899 | |||||
Radj2 | 0.9769 |
[1] | 吴学进, 梁冬梅, 刘春华. 我国柑橘生产上应用的植物生长调节剂登记现况及其分析[J]. 中国果树, 2020, 204(4):128-133. |
[2] |
PUTNIK P, BARBA F J, LORENZO J M, et al. An integrated approach to mandarin processing:Food safety and nutritional quality,consumer preference, and nutrient bioaccessibility[J]. Comprehensive reviews in food science and food safety, 2017, 16(6):1345-1358.
doi: 10.1111/crf3.2017.16.issue-6 URL |
[3] | 丁晓波, 张华, 刘世尧, 等. 柑橘果品营养学研究现状[J]. 园艺学报, 2012, 39(9):1687-1702. |
[4] | 赵青红. 崇左市柑橘生产中农残超标的原因及预防措施[J]. 农民致富之友, 2018, 586(17):41. |
[5] | 张金平. 输美柑橘罐头禁用多菌灵农药[J]. 农药市场信息, 2016, 31(26):17. |
[6] | 陈道茂. 重视破解柑橘农药使用中存在的食品安全隐患[J]. 浙江柑桔, 2009, 26(4):17-19. |
[7] | 夏清华. 柑橘果实中有机磷类农药残留监测及其受加工处理的影响研究[D]. 重庆:西南大学, 2020. |
[8] | 高红刚, 娄金培. 超声波农药降解机降解效果研究[J]. 食品与机械, 2017, 33(11):86-88,99. |
[9] |
MISRA N N, PANKAJ S K, WALSH T, et al. In-package nonthermal plasma degradation of pesticides on fresh produce[J]. Journal of hazardous materials, 2014, 271(8):33-40.
doi: 10.1016/j.jhazmat.2014.02.005 URL |
[10] | 刘淑敏, 唐兰兰, 陈智玲, 等. 湛江四种市售蔬菜农药残留的监测分析及洗涤方法对农残的影响[J]. 现代食品科技, 2020, 36(1):275-280,215. |
[11] |
DE SOUZA L P, FARONI L R D, HELENO F F, et al. Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology[J]. Food chemistry, 2018, 243(6):435-441.
doi: 10.1016/j.foodchem.2017.09.134 URL |
[12] | 尹芳, 张无敌, 周肸, 等. 新型生物农药残留降解剂研发及其潜在前景展望[J]. 灾害学, 2016, 31(3):157-159,169. |
[13] |
KAUSHIK G, SATYA S, NAIK S N. Food processing a tool to pesticide residue dissipation - a review[J]. Food research international, 2009, 42(1):26-40.
doi: 10.1016/j.foodres.2008.09.009 URL |
[14] | RODRIGUES A A Z, DE QUEIROZ M, DE OLIVEIRA A F, et al. Pesticide residue removal in classic domestic processing of tomato and its effects on product quality[J]. Journal of environmental science and health part b-pesticides food contaminants and agricultural wastes, 2017, 52(12):850-857. |
[15] |
CENGIZ M F, BASLAR M, BASANCELEBI O, et al. Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications[J]. Food chemistry, 2018, 267(30):60-66.
doi: 10.1016/j.foodchem.2017.08.031 URL |
[16] | 郝建雄, 李里特. 电生功能水消除蔬菜残留农药的实验研究[J]. 食品工业科技, 2006, 27(5):164-166. |
[17] | YANG J, SONG L, PAN C P, et al. Removal of ten pesticide residues on/in kumquat by washing with alkaline electrolysed water[J]. International journal of environmental analytical chemistry. 2020, 100(8):1-14 |
[18] |
WU Y, AN Q, LI D, et al. Comparison of different home/commercial washing strategies for ten typical pesticide residue removal effects in kumquat, spinach and cucumber[J]. International journal of environmental research and public health, 2019, 16(3):1-20.
doi: 10.3390/ijerph16010001 URL |
[19] |
SUNG J M, KWON K H, KIM J H, et al. Effect of washing treatments on pesticide residues and antioxidant compounds in Yuja (Citrus junos sieb ex tanaka)[J]. Food science and biotechnology, 2011, 20(3):767-773.
doi: 10.1007/s10068-011-0107-5 URL |
[20] |
RAHMAN S M E, KHAN I, OH D H. Electrolyzed water as a novel sanitizer in the food industry: Current trends and future perspectives[J]. Comprehensive Reviews in food science and food safety, 2016, 15(3):471-490.
doi: 10.1111/crf3.2016.15.issue-3 URL |
[21] | ONOJI S E, IYUKE S E, IGBAFE A I, et al. Hevea brasiliensis (rubber seed) oil: Modeling and optimization of extraction process parameters using response surface methodology and artificial neural network techniques[J]. Biofuels-UK, 2019, 10(6):677-691. |
[22] |
IMRON M F, TITAH H S. Optimization of diesel biodegradation by Vibrio alginolyticus using Box-Behnken design[J]. Environmental engineering research, 2018, 23(4):374-382.
doi: 10.4491/eer.2018.015 URL |
[23] |
CHEN G, CHEN J, SRINIVASAKANNAN C, et al. Application of response surface methodology for optimization of the synjournal of synthetic rutile from titania slag[J]. Applied surface science, 2012, 258(7):3068-3073.
doi: 10.1016/j.apsusc.2011.11.039 URL |
[24] | OLUSEGUN B P, TAYLOR S K, BYONG-HUN J, et al. Impact of redox-mediators in the degradation of olsalazine by marine-derived fungus, Aspergillus aculeatus strain bpo2: Response surface methodology, laccase stability and kinetics[J]. Ecotoxicology and environmental safety, 2021, 208(2):1-20. |
[25] |
DAS A, MISHRA S. Removal of textile dye reactive green-19 using bacterial consortium: Process optimization using response surface methodology and kinetics study[J]. Journal of environmental chemical engineering, 2017, 5(1):612-627.
doi: 10.1016/j.jece.2016.10.005 URL |
[26] | 王凌霄, 李再兴, 李涛, 等. 响应曲面法优化污泥碱解上清液中氮磷回收[J]. 水处理技术, 2020, 46(11):62-67. |
[1] | 王向平, 张建海, 冯彬彬. 超声辅助响应面法优化种植佛手中橙皮苷和柚皮苷提取工艺的研究[J]. 中国农学通报, 2022, 38(4): 113-119. |
[2] | 张峻伟, 张晓虎, 徐愉聪. 南五味子酯乙-Nisin-KGM复合涂膜剂在鲜肉保鲜中的研究[J]. 中国农学通报, 2022, 38(34): 120-129. |
[3] | 王文萱, 李云鹏, 徐鹤宁, 赵鑫, 马柔, 张丽娜, 张莹莹. 水茄叶片总皂苷超声提取工艺的研究[J]. 中国农学通报, 2022, 38(30): 118-125. |
[4] | 李佳欢, 王晓慧, 姜明国, 宋福强, 常伟. 基于响应面法优化印度梨形孢培养基[J]. 中国农学通报, 2022, 38(3): 102-109. |
[5] | 郑龙. 基于响应面设计的小白菜氮磷钾肥料效应研究[J]. 中国农学通报, 2022, 38(25): 20-24. |
[6] | 张赫, 万璐, 闫佳佳, 尤梦瑶, 曾伟民, 郑春英. 响应面法优化刺五加高产异嗪皮啶的发酵工艺[J]. 中国农学通报, 2022, 38(19): 152-158. |
[7] | 许丹丹, 徐雅琴, 隽行, 周守标, 汪昌保, 杭华. 富硒菊芋多糖的提取及其体外抗氧化活性研究[J]. 中国农学通报, 2021, 37(30): 121-127. |
[8] | 肖秦箭, 张晓虎, 高梦蝶, 张峻伟. 商洛南五味子醇乙提取纯化及复合防腐保鲜剂研究[J]. 中国农学通报, 2021, 37(12): 126-135. |
[9] | 谢勇飞, 赵钢, 孙娜, 吕银萍, 吴勇, 沈美辰, 吕文犇, 高俊山. 响应面法优化棕色棉纤维原花青素的提取工艺[J]. 中国农学通报, 2021, 37(12): 136-143. |
[10] | 杨丹丹, 杨传伦, 张心青, 潘冬梅, 李佳明, 陈振发. 响应面法优化绿色木霉产孢子固体发酵培养基[J]. 中国农学通报, 2020, 36(36): 84-92. |
[11] | 林凡, 侯笑笑, 刘靖宇, 常明昌, 孟俊龙. 蛹虫草子实体多糖提取工艺及其体外抗氧化性研究[J]. 中国农学通报, 2020, 36(2): 122-128. |
[12] | 孙子钦,王 燕. 基于响应面法优化糙米速食粥加工工艺[J]. 中国农学通报, 2019, 35(8): 106-113. |
[13] | 张成,胡紫薇,罗映,李芷盈. 响应面法优化紫茉莉籽黄酮提取及其抗氧化活性研究[J]. 中国农学通报, 2019, 35(34): 127-133. |
[14] | 李会珍,李 娜,谭永兰,张志军. 紫苏细胞悬浮培养生产迷迭香酸的条件优化[J]. 中国农学通报, 2019, 35(28): 32-37. |
[15] | 张晓虎,李智文,殷佳琦,高佳. 商洛黄芩汉黄芩素提取及复合保鲜液应用研究[J]. 中国农学通报, 2019, 35(22): 147-155. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 736
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 341
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||