中国农学通报 ›› 2022, Vol. 38 ›› Issue (9): 115-122.doi: 10.11924/j.issn.1000-6850.casb2021-0427
李少杰1,2,3(), 肖清山1,2,3, 宋福强1,2, 王歆1,2,3(
)
收稿日期:
2021-04-22
修回日期:
2021-08-13
出版日期:
2022-03-25
发布日期:
2022-04-02
通讯作者:
王歆
作者简介:
李少杰,男,1998年出生,山西晋城人,硕士,研究方向:修复生态学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号 黑龙江大学生命科学学院,Tel:15234632688,E-mail: 基金资助:
LI Shaojie1,2,3(), XIAO Qingshan1,2,3, SONG Fuqiang1,2, WANG Xin1,2,3(
)
Received:
2021-04-22
Revised:
2021-08-13
Online:
2022-03-25
Published:
2022-04-02
Contact:
WANG Xin
摘要:
AM真菌在没有植物共生的情况下还无法像其他种类真菌一样在培养基上纯培养,这一问题极大地限制了对AM真菌的基础研究和应用研究。为了明确不同丛枝菌根(AM)真菌培养的特点,最终实现AM真菌的纯培养目标,本文归纳并比较了AM真菌与完整植物体共生培养的方法,包括土壤盆栽法、营养液膜法、汽雾栽培法、培养基培养法;总结了AM真菌与植物根系双重培养的方式,包括原生根培养和转化根培养。同时提出了相关后续的研究重点,以期为AM真菌培养及共生机制研究提供参考。
中图分类号:
李少杰, 肖清山, 宋福强, 王歆. 丛枝菌根(AM)真菌扩培技术研究进展[J]. 中国农学通报, 2022, 38(9): 115-122.
LI Shaojie, XIAO Qingshan, SONG Fuqiang, WANG Xin. Propagation of Arbuscular Mycorrhizal Fungi: A Review[J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 115-122.
AM真菌种类 | 繁殖体 | 宿主根 | 培养基 | 培养方式 | 参考文献 |
---|---|---|---|---|---|
Glomus intraradicesMUCL 49410 | 孢子 | Medicago truncatula | MSR | 单室培养 | [ |
Glomus intraradicesDAOM 197198 | 孢子 | Lycopersicon esculentum wild-type 76R and rmc | M | 单室培养 | [ |
Glomus intraradicesMUCL 43204 | 孢子 | Lunularia cruciata | SRV | 单室培养 | [ |
Glomus intraradices | 孢子 | Solanum lycopersicum L. | M | 单室培养 | [ |
Gigaspora margarita | 孢子 | Lycopersicon esculentum Mill. | MS | 单室培养 | [ |
孢子 | Linum usitatissimim L. Tagetes pastula L. Althaea offificinalis L. | M | 单室培养 | [ | |
Glomus proliferumMUCL 41827 | 孢子 | Lunularia cruciata | SRV | 单室培养 | [ |
Glomus mosseae | 孢子 | Lycopersicum esculentum Mill. Trifolium pratense L. | White | 单室培养 | [ |
孢子 | Saccharum offificinarum Sorghum vulgare | M | 单室培养 | [ | |
Glomus versiforme | 囊泡 | Solanum lycipersicum L. | M | 单室培养 | [ |
AM真菌种类 | 繁殖体 | 宿主根 | 培养基 | 培养方式 | 参考文献 |
---|---|---|---|---|---|
Glomus intraradicesMUCL 49410 | 孢子 | Medicago truncatula | MSR | 单室培养 | [ |
Glomus intraradicesDAOM 197198 | 孢子 | Lycopersicon esculentum wild-type 76R and rmc | M | 单室培养 | [ |
Glomus intraradicesMUCL 43204 | 孢子 | Lunularia cruciata | SRV | 单室培养 | [ |
Glomus intraradices | 孢子 | Solanum lycopersicum L. | M | 单室培养 | [ |
Gigaspora margarita | 孢子 | Lycopersicon esculentum Mill. | MS | 单室培养 | [ |
孢子 | Linum usitatissimim L. Tagetes pastula L. Althaea offificinalis L. | M | 单室培养 | [ | |
Glomus proliferumMUCL 41827 | 孢子 | Lunularia cruciata | SRV | 单室培养 | [ |
Glomus mosseae | 孢子 | Lycopersicum esculentum Mill. Trifolium pratense L. | White | 单室培养 | [ |
孢子 | Saccharum offificinarum Sorghum vulgare | M | 单室培养 | [ | |
Glomus versiforme | 囊泡 | Solanum lycipersicum L. | M | 单室培养 | [ |
丛枝菌根真菌种类 | 繁殖体 | 发根农杆菌种类 | 宿主根 | 培养基 | 培养方式 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Glomus intraradices CMCCROC7 | 孢子 | Ri1600 | Solanum tuberosum var ‘Pukhraj' | M | 单室培养 | [ | ||||||
Glomus intraradices MUCL43194 | 孢子 | K599 | Astragalua sinicus L. | MSR | 单室培养 | [ | ||||||
Glomus intraradices | 孢子 | clone Gp | Daucus carota L. | M | 单室培养 | [ | ||||||
孢子 | UNSW | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | A4 | Lycopersicon esculentum Micro-Tom | M | 单室培养 | [ | |||||||
孢子 | --- | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | --- | Daucus carota L. | M | 双室培养 | [ | |||||||
囊泡 | --- | Daucus carota L. | MSR | 单室培养 | [ | |||||||
孢子 | A4T | Medicago truncatula Gaertn. | M | 单室培养 | [ | |||||||
囊泡 | --- | Daucus carota L. | M | 双室培养 | [ | |||||||
Rhizophagus intraradices (GC3) | 孢子 | A4 | Daucus carota L. | M+土壤 | 双室培养 | [ | ||||||
Rhizophagus irregularis DAOM 181602 | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Rhizophagus irregularis C3、DAOM 197198 | 孢子 | A4 | Daucus carota L. | M、MS | 双室培养 | [ | ||||||
Rhizophagus intraradices | 孢子 | LBA9402 | Lotus japonicus | MSR | 单室培养 | [ | ||||||
孢子 | --- | Ocimum basilicum | M | 单室培养 | [ | |||||||
Gigaspora margarita | 孢子 | A4、LBA9402、ATCC15834 | Lycopersicon esculantum L.var. Pusa Ruby. | MS、M | 单室培养 | [ | ||||||
孢子 | clone Gp | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | |||||||
Gigaspora decipiens (JA2 strain) | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Gigaspora decipiens | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Glomus clarum | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
孢子 | LBA9402 | Daucus carota L. Trifolium repens L. | M | 单室培养 | [ | |||||||
Glomus proliferum | 囊泡 | --- | Daucus carota L. | MSR | 单室培养 双室培养 | [ | ||||||
Gigaspora gigantea | 孢子 | A4、R1000 | Solanum lycopersicum L. | MSR | 单室培养 | [ | ||||||
孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | ---- | Daucus carota L. | G+T | 单室培养 | [ | |||||||
Funneliformis mosseae | 孢子 | K599 | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Gigaspora roseae | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Scutellospora reticulata | 孢子 | ---- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Acaulospora rehmii | 孢子 | --- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Glomus caledonium | 孢子 | ---- | Daucus carota L. | M | 单室培养 | [ | ||||||
Glomus etunicatum | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Glomus fasciculatum | 囊泡 | --- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Glomus fistulosum | 孢子 | A4 | Fragaria x Ananassa Duchesne. | M | 单室培养 | [ | ||||||
Glomus mosseae | 孢子 | --- | Daucus carota L. Convolvulus sepium L. Solanum tuberosum L. Vigna unguiculata Walp. | 双室培养 | [ | |||||||
孢子+囊泡 | --- | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | --- | Daucus carota L. | M | 单室培养 | [ | |||||||
Glomus macrocarpum | 囊泡 | --- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Glomus versiforme | 囊泡 | --- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Rhizophagus aggregatus (GX4) | 孢子 | A4 | Daucus carota L. | M+土壤 | 双室培养 | [ |
丛枝菌根真菌种类 | 繁殖体 | 发根农杆菌种类 | 宿主根 | 培养基 | 培养方式 | 参考文献 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Glomus intraradices CMCCROC7 | 孢子 | Ri1600 | Solanum tuberosum var ‘Pukhraj' | M | 单室培养 | [ | ||||||
Glomus intraradices MUCL43194 | 孢子 | K599 | Astragalua sinicus L. | MSR | 单室培养 | [ | ||||||
Glomus intraradices | 孢子 | clone Gp | Daucus carota L. | M | 单室培养 | [ | ||||||
孢子 | UNSW | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | A4 | Lycopersicon esculentum Micro-Tom | M | 单室培养 | [ | |||||||
孢子 | --- | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | --- | Daucus carota L. | M | 双室培养 | [ | |||||||
囊泡 | --- | Daucus carota L. | MSR | 单室培养 | [ | |||||||
孢子 | A4T | Medicago truncatula Gaertn. | M | 单室培养 | [ | |||||||
囊泡 | --- | Daucus carota L. | M | 双室培养 | [ | |||||||
Rhizophagus intraradices (GC3) | 孢子 | A4 | Daucus carota L. | M+土壤 | 双室培养 | [ | ||||||
Rhizophagus irregularis DAOM 181602 | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Rhizophagus irregularis C3、DAOM 197198 | 孢子 | A4 | Daucus carota L. | M、MS | 双室培养 | [ | ||||||
Rhizophagus intraradices | 孢子 | LBA9402 | Lotus japonicus | MSR | 单室培养 | [ | ||||||
孢子 | --- | Ocimum basilicum | M | 单室培养 | [ | |||||||
Gigaspora margarita | 孢子 | A4、LBA9402、ATCC15834 | Lycopersicon esculantum L.var. Pusa Ruby. | MS、M | 单室培养 | [ | ||||||
孢子 | clone Gp | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | |||||||
Gigaspora decipiens (JA2 strain) | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Gigaspora decipiens | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Glomus clarum | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
孢子 | LBA9402 | Daucus carota L. Trifolium repens L. | M | 单室培养 | [ | |||||||
Glomus proliferum | 囊泡 | --- | Daucus carota L. | MSR | 单室培养 双室培养 | [ | ||||||
Gigaspora gigantea | 孢子 | A4、R1000 | Solanum lycopersicum L. | MSR | 单室培养 | [ | ||||||
孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | ---- | Daucus carota L. | G+T | 单室培养 | [ | |||||||
Funneliformis mosseae | 孢子 | K599 | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Gigaspora roseae | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Scutellospora reticulata | 孢子 | ---- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Acaulospora rehmii | 孢子 | --- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Glomus caledonium | 孢子 | ---- | Daucus carota L. | M | 单室培养 | [ | ||||||
Glomus etunicatum | 孢子 | A4 | Daucus carota L. | M | 单室培养 | [ | ||||||
Glomus fasciculatum | 囊泡 | --- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Glomus fistulosum | 孢子 | A4 | Fragaria x Ananassa Duchesne. | M | 单室培养 | [ | ||||||
Glomus mosseae | 孢子 | --- | Daucus carota L. Convolvulus sepium L. Solanum tuberosum L. Vigna unguiculata Walp. | 双室培养 | [ | |||||||
孢子+囊泡 | --- | Daucus carota L. | M | 单室培养 | [ | |||||||
孢子 | --- | Daucus carota L. | M | 单室培养 | [ | |||||||
Glomus macrocarpum | 囊泡 | --- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Glomus versiforme | 囊泡 | --- | Daucus carota L. | MSR | 单室培养 | [ | ||||||
Rhizophagus aggregatus (GX4) | 孢子 | A4 | Daucus carota L. | M+土壤 | 双室培养 | [ |
[1] | 李娇娇, 曾明. 丛枝菌根对植物根际逆境的生态学意义[J]. 应用生态学报, 2020, 31(09):3216-3226. |
[2] |
SOSA-HERNANDEZ M A, LEIFHEIT E F, INGRAFFIA R, et al. subsoil arbuscular mycorrhizal fungi for sustainability and climate-smart agriculture: a solution right under our feet?[J]. Front microbiol, 2019, 10:744.
doi: 10.3389/fmicb.2019.00744 URL |
[3] | ASMELASH F, BEKELE T, BIRHANE E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands[J]. Front Microbiol, 2016, 7:1095. |
[4] |
HILDEBRANDT U, JANETTA K, BOTHE H. Towards growth of arbuscular mycorrhizal fungi independent of a plant host[J]. Appl environ microbiol, 2002, 68(4):1919-1924.
doi: 10.1128/AEM.68.4.1919-1924.2002 URL |
[5] | 陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3):1035-1046. |
[6] | BIERMANN B, LINDERMAN R G. Effect of container plant growth medium and fertilizer phosphorus on establishment and host growth response to vesicular arbuscular mycorrhizae propagules. MSc journal[J]. University of montréal j am soc hortic sci, 1983, 108:962-971. |
[7] | 王紫芹, 甘德欣, 龙岳林. 无土栽培研究进展(英文)[J]. Agricultural science & technology, 2013, 14(2):269-278. |
[8] |
IJDO M, IJDO M, CRANENBROUCK S, et al. Methods for large-scale production of AM fungi: past, present, and future[J]. Mycorrhiza, 2011, 21(1):1-16.
doi: 10.1007/s00572-010-0337-z URL |
[9] |
MOSSE B. The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions[J]. Journal of general microbiology, 1962, 27(3):509-520.
doi: 10.1099/00221287-27-3-509 URL |
[10] |
DE BOULOIS H D, VOETS L, DELVAUX B, et al. Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions[J]. Environmental microbiology, 2006, 8(11):1926-1934.
doi: 10.1111/emi.2006.8.issue-11 URL |
[11] |
MOSSE B, HEPPER C. Vesicular-arbuscular mycorrhizal infections in root organ cultures[J]. Physiological plant pathology, 1975, 5(3):215-223.
doi: 10.1016/0048-4059(75)90088-0 URL |
[12] |
IJDO M, SCHTICKZELLE N, CRANENBROUCK S, et al. Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation?[J]. FEMS microbiol ecol, 2010, 72(1):114-122.
doi: 10.1111/fem.2010.72.issue-1 URL |
[13] |
BAGO A, CANO C, TOUSSAINT J, et al. Interactions between the arbuscular mycorrhizal (AM) fungus Glomus intraradices and nontransformed tomato roots of either wild-type or AM-defective phenotypes in monoxenic cultures[J]. Mycorrhiza, 2006, 16(6):429-436.
doi: 10.1007/s00572-006-0054-9 URL |
[14] |
FONSECA H M A C, BERBARA R L L, PEREIRA M L. Lunularia cruciata, a potential in vitro host for Glomus proliferum and G. intraradices[J]. Mycorrhiza, 2006, 16(7):503-508.
doi: 10.1007/s00572-006-0061-x URL |
[15] |
CHABOT S, BECARD G, PICHE Y. Life Cycle of Glomus intraradix in root organ culture[J]. Mycologia, 1992, 84(3):315-321.
doi: 10.1080/00275514.1992.12026144 URL |
[16] |
MILLER-WIDEMAN M A, WATRUD L S. Sporulation of Gigaspora margarita on root cultures of tomato[J]. Canadian journal of microbiology, 1984, 30(5):642-646.
doi: 10.1139/m84-095 URL |
[17] | KARANDASHOV V E, KUZOVKINA I N, GEORGE E, et al. Monoxenic culture of arbuscular mycorrhizal fungi and plant hairy roots[J]. Russian journal of plant physiology, 1999, 46(1):87-92. |
[18] | RAMAN N, SAHADEVAN C, SRINIVASAN V. Growth of AM fungi on in vitro root organ culture of Sorghum vulgare and Saccharum officinarum[J]. Indian journal of experimental biology, 2001, 39(12):1293-1298. |
[19] |
DIOP T A, PLENCHETTE C, STRULLU D G. Dual axenic culture of sheared-root inocula of vesicular-arbuscular mycorrhizal fungi associated with tomato roots[J]. Mycorrhiza, 1994, 5(1):17-22.
doi: 10.1007/BF00204015 URL |
[20] |
STRULLU D G, ROMAND C, PLENCHETTE C. Axenic culture and encapsulation of the intraradical forms of Glomus spp.[J]. World journal of microbiology & biotechnology, 1991, 7(3):292-297.
doi: 10.1007/BF00329394 URL |
[21] |
MUGNIER J. Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically[J]. Phytopathology, 1987, 77(6):1045-1050.
doi: 10.1094/Phyto-77-1045 URL |
[22] |
RON M, KAJALA K, PAULUZZI G, et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model[J]. Plant physiol, 2014, 166(2):455-469.
doi: 10.1104/pp.114.239392 URL |
[23] | PURI A, ADHOLEYA A. A new system using Solanum tuberosum for the co-cultivation of Glomus intraradices and its potential for mass producing spores of arbuscular mycorrhizal fungi[J]. Symbiosis (Philadelphia, Pa.), 2013, 59(2):87-97. |
[24] | 曹玲, 赵斌. AM真菌与紫云英Ri T-DNA转化根双重培养体系的建立[J]. 土壤学报, 2011, 48(01):212-216. |
[25] |
TIWARI P, ADHOLEYA A. In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T-DNA transformed roots[J]. FEMS microbiology letters, 2002, 206(1):39-43.
doi: 10.1111/fml.2002.206.issue-1 URL |
[26] | MOHAMMA A, KHAN A G. Monoxenic in vitro production and colonization potential of AM fungus Glomus intraradices[J]. Indian journal of experimental biology, 2002, 40(9):1087-1091. |
[27] | 王晶晶, 孙淑斌, 徐国华. 丛枝菌根真菌侵染番茄离体毛状根双重培养体系的建立[J]. 菌物学报, 2010, 29(1):68-74. |
[28] |
ST-ARNAUD M, HAMEL C, VIMARD B, et al. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots[J]. Mycological Research, 1996, 100(3):328-332.
doi: 10.1016/S0953-7562(96)80164-X URL |
[29] |
STÉPHANE D, DÉSIRÉ G S, CHRISTIAN P. Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection[J]. Mycologia, 1998, 90(4):579-585.
doi: 10.2307/3761216 URL |
[30] |
BOISSON-DERNIER A, CHABAUD M, GARCIA F, et al. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations[J]. Molecular plant-microbe interactions, 2001, 14(6):695-700.
doi: 10.1094/MPMI.2001.14.6.695 URL |
[31] |
DOUDS D. Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza[J]. Mycorrhiza, 2002, 12(4):163-167.
doi: 10.1007/s00572-002-0174-9 URL |
[32] |
SILVANI V A, STATELLO M, SCORZA M V, et al. A novel in vitro methodology to cultivate arbuscular mycorrhizal fungi combining soil and synthetic media[J]. Symbiosis, 2019, 79(2):163-170.
doi: 10.1007/s13199-019-00637-z URL |
[33] |
BUI V C, FRANKEN P. Acclimatization of Rhizophagus irregularis enhances Zn tolerance of the fungus and the mycorrhizal plant partner[J]. Front microbiol, 2018, 9:3156.
doi: 10.3389/fmicb.2018.03156 URL |
[34] |
ROSIKIEWICZ P, BONVIN J, SANDERS I R. Cost-efficient production of in vitro Rhizophagus irregularis[J]. Mycorrhiza, 2017, 27(5):477-486.
doi: 10.1007/s00572-017-0763-2 URL |
[35] |
YUNJIAN X, FANG L, GUOMIN H, et al. Improvement of Lotus japonicus hairy root induction and development of a mycorrhizal symbiosis system[J]. Applications in plant sciences, 2018, 6(4):e1141.
doi: 10.1002/aps3.2018.6.issue-4 URL |
[36] |
SRIVASTAVA S, CONLAN X A, CAHILL D M, et al. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system[J]. Mycorrhiza, 2016, 26(8):919-930.
doi: 10.1007/s00572-016-0721-4 URL |
[37] | ABDUL-KHALIQ, BAGYARAJ D J. Colonization of arbuscular-mycorrhizal fungi on Ri T-DNA transformed roots in synthetic medium[J]. Indian journal of experimental biology, 2000, 38(11):1147-1151. |
[38] |
GADKAR V, ADHOLEYA A, SATYANARYANA T. Randomly amplified polymorphic DNA using the M13 core sequence of the vesicular-arbuscular mycorrhizal fungi Gigaspora margarita and Gigaspora gigantea[J]. Canadian journal of microbiology, 1997, 43(8):795-798.
doi: 10.1139/m97-115 URL |
[39] |
BIDONDO L F, PERGOLA M, SILVANI V, et al. Continuous and long-term monoxenic culture of the arbuscular mycorrhizal fungus Gigaspora decipiens in root organ culture[J]. Fungal biology, 2012, 116(6):729-735.
doi: 10.1016/j.funbio.2012.04.007 URL |
[40] | COSTA F A, HADDAD L S A M, KASUYA M C M, et al. In vitro culture of Gigaspora decipiens and Glomus clarum in transformed roots of carrot: the influence of temperature and pH[J]. Acta scientiarum. agronomy, 2013, 35(3):315-323. |
[41] | DE SOUZA F A, BERBARA R L L. Ontogeny of Glomus clarum in Ri T-DNA transformed roots[J]. Mycologia, 1999, 91(2):343-350. |
[42] |
STÉPHANE D, SYLVIE C, YOLANDE D, et al. Glomus proliferum sp. nov.: a description based on morphological, biochemical, molecular and monoxenic cultivation data[J]. Mycologia, 2000, 92(6):1178-1187.
doi: 10.2307/3761485 URL |
[43] | ELLATIF S A, M. ALI E A, SENOUSY H H, et al. Production of arbuscular mycorrhizal fungi using in vitro root organ culture and phenolic compounds[J]. Journal of pure & applied microbiology: an international research journal of microbiology, 2019, 13(4):1985-1994. |
[44] |
BARBARA M. Some studies relating to "independent" growth of vesicular-arbuscular endophytes[J]. Canadian journal of botany, 1988, 66(12):2533-2540.
doi: 10.1139/b88-345 URL |
[45] | 张金莲, 刘金华, 包涵, 等. 丛枝菌根真菌与胡萝卜毛状根双重培养体系研究[J]. 热带作物学报, 2020, 41(8):1535-1542. |
[46] | DIOP T A, BÉCARD G, PICHÉ Y. Long-term in vitro culture of an endomycorrhizal fungus, Gigaspora margarita, on Ri T-DNA transformed roots of carrot[J]. Symbiosis, 1992, 12(3):249-259. |
[47] |
DE SOUZA F A, DECLERCK S. Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots[J]. Mycologia, 2003, 95(6):1004-1012.
doi: 10.2307/3761908 URL |
[48] |
DALPE Y, DECLERCK S. Development of Acaulospora rehmii spore and hyphal swellings under root-organ culture[J]. Mycologia, 2002, 94(5):850-855.
doi: 10.2307/3761699 URL |
[49] |
KARANDASHOV V, KUZOVKINA I, HAWKINS H, et al. Growth and sporulation of the arbuscular mycorrhizal fungus Glomus caledonium in dual culture with transformed carrot roots[J]. Mycorrhiza, 2000, 10(1):23-28.
doi: 10.1007/s005720050283 URL |
[50] |
PAWLOWSKA T E, DOUDS D D, CHARVAT I. In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum[J]. Mycological research, 1999, 103(12):1549-1556.
doi: 10.1017/S0953756299008801 URL |
[51] | NUUTILA A M, VESTBERG M, KAUPPINEN V. Infection of hairy roots of strawberry (Fragaria x Ananassa duch.) with arbuscular mycorrhizal fungus[J]. Plant cell reports, 1995, 14(8):505-509. |
[52] |
DOUDS JR D D. A procedure for the establishment of Glomus mosseae in dual culture with Ri T-DNA-transformed carrot roots[J]. Mycorrhiza, 1997, 7(2):57-61.
doi: 10.1007/s005720050164 URL |
[53] |
VASILIS, KOKKORIS, MIRANDA, et al. In vitro propagation of arbuscular mycorrhizal fungi may drive fungal evolution[J]. Frontiers in microbiology, 2019, 10:2420.
doi: 10.3389/fmicb.2019.02420 URL |
[54] |
JIANG Y, WANG W, XIE Q, et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343):1172-1175.
doi: 10.1126/science.aam9970 URL |
[55] |
OLDROYD G E. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants[J]. Nat rev microbiol, 2013, 11(4):252-263.
doi: 10.1038/nrmicro2990 URL |
[56] |
SUGIURA Y, AKIYAMA R, TANAKA S, et al. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi[J]. Proc natl acad sci U S A, 2020, 117(41):25779-25788.
doi: 10.1073/pnas.2006948117 URL |
[1] | 陈芳玲, 樊娅萍, 贺苗苗, 王倡宪. 丛枝菌根真菌在药用植物上的应用研究进展[J]. 中国农学通报, 2022, 38(12): 55-60. |
[2] | 马俊卿, 侯宁, 孙晨瑜, 杨怡森, 覃圣峰, 王勇, 刘璐, 廖虹霖, 黄京华. 宿主不同对丛枝菌根真菌扩繁效应的影响[J]. 中国农学通报, 2022, 38(1): 7-14. |
[3] | 汪茜, 宋娟, 李冬萍, 刘增亮, 车江旅, 陈廷速. 丛枝菌根真菌及深色有隔内生真菌对大田生姜生长效应分析[J]. 中国农学通报, 2021, 37(6): 62-67. |
[4] | 曾端香, 袁涛, 王莲英. 丛枝菌根真菌(AMF)接种剂种类和接种时期对牡丹菌根化组培苗培养的影响[J]. 中国农学通报, 2021, 37(30): 53-58. |
[5] | 赵旭, 宋清晖, 王晓慧, 王学刚, 冯宇涵, 孙思淼, 李洪涛, 常伟, 宋福强. 几种有机肥对玉米光合特性及土壤酶活性的影响[J]. 中国农学通报, 2021, 37(3): 36-42. |
[6] | 高文礼, 再努尔·吐尔逊, 桑钰, 马晓东. 丛枝菌根真菌对植物氮素吸收作用的研究进展[J]. 中国农学通报, 2021, 37(27): 53-58. |
[7] | 贾艳艳, 诸俊, 顾大路, 杨文飞, 杜小凤, 孙爱侠, 钱新民, 文廷刚, 朱云林. 接种丛枝菌根真菌对麦秆分解和旱稻生长的影响[J]. 中国农学通报, 2020, 36(30): 1-6. |
[8] | 路成成, 蔡柏岩. AM真菌改善植物磷营养吸收和转运机制的研究进展[J]. 中国农学通报, 2020, 36(26): 50-54. |
[9] | 张 童,隋 心,宋福强. 基于Web of Science研究丛枝菌根真菌(AMF)态势分析[J]. 中国农学通报, 2019, 35(12): 144-150. |
[10] | 杨超,蔡柏岩. AM真菌对连作作物根系代谢产物的影响[J]. 中国农学通报, 2018, 34(14): 35-39. |
[11] | 周修腾,王 雪,黄璐琦,陈 敏,肖文娟,杨光,李鹏英,华国栋,陈美兰. 丛枝菌根真菌对丹参木质部结构及防御相关基因的影响[J]. 中国农学通报, 2017, 33(4): 98-104. |
[12] | 宋福强,牛丽纯,常伟,范晓旭,刘璇,高扬. 盐碱地引种沙枣根瘤内生菌及根际土壤AM 真菌的多样性[J]. 中国农学通报, 2016, 32(7): 6-13. |
[13] | 周修腾,康利平,李鹏英,杨 光,王 雪,陈美兰. UPLC-MS/MS测定AM真菌侵染丹参植物脱落酸含量[J]. 中国农学通报, 2016, 32(12): 92-97. |
[14] | 张丽 张传光 谷林静 张仕颖 张乃明 黄志能 夏运生. 接种Glomus mosseae对磷石膏施用烤烟苗期生长及磷、硫、砷吸收的影响[J]. 中国农学通报, 2014, 30(4): 162-169. |
[15] | 杨凤铃 赵方贵 刘洪庆 刘新. 不同烟草栽培地区土壤理化性质与AM真菌分布关系[J]. 中国农学通报, 2011, 27(1): 116-120. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||