欢迎访问《中国农学通报》,

中国农学通报 ›› 2023, Vol. 39 ›› Issue (4): 149-153.doi: 10.11924/j.issn.1000-6850.casb2022-0176

• 工程·机械·水利·装备 • 上一篇    下一篇

基于无人机多光谱影像的水稻冠层SPAD值预测研究

田婷1(), 张青1, 徐雯2   

  1. 1苏州市农业科学院/江苏太湖地区农业科学研究所,江苏苏州 215106
    2江苏省农业技术推广总站,南京 210036
  • 收稿日期:2022-03-15 修回日期:2022-07-20 出版日期:2023-02-05 发布日期:2023-01-31
  • 作者简介:

    田婷,女,1988年出生,江苏金坛人,助理研究员,硕士,主要从事作物遥感监测。通信地址:215106 江苏省苏州市吴中区临湖镇东山大道2351号(三塘村公交站东面) 苏州市农业科学院,E-mail:

  • 基金资助:
    苏州市科技计划项目“基于无人机遥感的水稻长势监测研究”(SNG2018059); 苏州市农业科学院科研基金项目“水稻生产全周期智慧农业关键技术集成与应用研究”(21014)

Prediction of Rice Canopy SPAD Value Based on UAV Multispectral Images

TIAN Ting1(), ZHANG Qing1, XU Wen2   

  1. 1Suzhou Academy of Agricultural Sciences/ Taihu Agricultural Research Institute of Jiangsu, Suzhou, Jiangsu 215106
    2Jiangsu Agricultural Technology Extension Station, Nanjing 210036
  • Received:2022-03-15 Revised:2022-07-20 Online:2023-02-05 Published:2023-01-31

摘要:

比较筛选水稻冠层SPAD值估测模型,为无人机多光谱遥感反演水稻SPAD值提供依据。利用无人机获取水稻拔节期、抽穗期、乳熟期的冠层多光谱影像,选取7种常用的植被指数,利用3种回归方法建立基于植被指数的水稻叶片SPAD值反演模型。结果表明,在不同生育期与水稻叶片SPAD值相关系数最高的植被指数不相同,拔节期最高的是GNDVI,抽穗期最高的是CIGreen,乳熟期最高的是CIRededge。抽穗期是水稻叶片SPAD值反演的最佳时期,模型具有较好的建模精度和估测效果,其中多元线性回归的建模精度较高,偏最小二乘回归模型的估测效果最好。试验结果可为水稻长势的实时无损监测提供参考。

关键词: 水稻, SPAD值, 预测模型, 无人机, 多光谱遥感

Abstract:

The aim of this study is to compare and screen SPAD estimation models of rice canopy, and to provide a basis for inversing SPAD value of rice by unmanned aerial vehicle (UAV) multispectral remote sensing. This paper used UAV to obtain the canopy multispectral images of rice at jointing stage, heading stage and milky maturity stage. Seven commonly used vegetation indices were selected and three regression methods were used to establish the SPAD value inversion model of rice leaves. The results showed that the vegetation indices with the highest correlation coefficient with SPAD value of rice leaves were different at different growth stages. GNDVI was the highest at jointing stage, CIGreen was the highest at heading stage, and CIRededge was the highest at milky maturity stage. The heading stage was the best inversion stage of SPAD value, and the model had good modeling precision and estimation effect. According to the accuracy test, multivariate linear regression model had relatively high modeling accuracy, and partial least squares regression had the best estimation effect. Thus, this research provides a new technology to supervise the growth information of rice and other crops. The experimental results can provide methods and reference for the real-time and nondestructive monitoring of rice growth.

Key words: rice, SPAD value, predictive model, unmanned aerial vehicle, multispectral remote sensing