| [1] | ZHU J K, LIU J, XIONG L. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition[J]. The plant cell, 1998, 10(7):1181-1191. | 
																													
																						| [2] | CHINNUSAMY V, SCHUMAKER K, ZHU J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. Journal of experimental botany, 2004, 55(395):225-236.  doi: 10.1093/jxb/erh005    
																																																	pmid: 14673035
 | 
																													
																						| [3] | DANQUAH A, DE ZELICOURT A, COLCOMBET J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Biotechnol adv, 2014, 32(1):40-52.  doi: 10.1016/j.biotechadv.2013.09.006    
																																																	pmid: 24091291
 | 
																													
																						| [4] | PIETERSE C M, VAN DER DOES D, ZAMIOUDIS C, et al. Hormonal modulation of plant immunity[J]. Annual review of cell and developmental biology, 2012,28:489-521. | 
																													
																						| [5] | GRELET J, BENAMAR A, TEYSSIER E, et al. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying1[J]. Plant physiology, 2005,137:157-167. | 
																													
																						| [6] | BRAY E A. Molecular responses to water deficit[J]. Plant physiol, 1993, 103(4):1035-1040.  pmid: 12231998
 | 
																													
																						| [7] | UMEZAWA T, FUJITA M, FUJITA Y, et al. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future[J]. Current opinion in biotechnology, 2006, 17(2):113-122.  doi: 10.1016/j.copbio.2006.02.002    
																																																	pmid: 16495045
 | 
																													
																						| [8] | HINCHA D K, THALHAMMER A. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance[J]. Biochemical society transactions, 2012, 40(5):1000-1003.  pmid: 22988854
 | 
																													
																						| [9] | 张晓敏. 园林绿化植物沙棘的耐盐性研究及耐盐品种筛选[D]. 沈阳: 沈阳农业大学, 2021. | 
																													
																						| [10] | GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: i. occurrence in higher plants 1 2[J]. Plant physiology, 1977, 59(2):309.  doi: 10.1104/pp.59.2.309    
																																																	pmid: 16659839
 | 
																													
																						| [11] | THOMAS R L, JEN J J, MORR C V. Changes in solule and ound peroxidase, IAA oxidase during tamato fruit development[J]. Journal of food science, 1981,47:158-161. | 
																													
																						| [12] | CAKMAK I, MARSCHNER H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves 1[J]. Plant physiology, 1992, 98(4):1222-1227.  doi: 10.1104/pp.98.4.1222    
																																																	pmid: 16668779
 | 
																													
																						| [13] | DHINDSA R S, PAMELA P D, THORPE T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of experimental botany, 1981(1):93-101. | 
																													
																						| [14] | 高俊凤. 植物生理学实验指导[M]. 植物生理学实验指导, 2006:219. | 
																													
																						| [15] | LIANG W, MA X, WAN P, et al. Plant salt-tolerance mechanism: a review[J]. Biochemical and biophysical research communications, 2018, 495(1):286-291.  doi: S0006-291X(17)32220-9    
																																																	pmid: 29128358
 | 
																													
																						| [16] | MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual review of plant biology, 2008, 59:651-681.  doi: 10.1146/annurev.arplant.59.032607.092911    
																																																	pmid: 18444910
 | 
																													
																						| [17] | HAJIHASHEMI S, SKALICKY M, BRESTIC M, et al. Effect of sodium nitroprusside on physiological and anatomical features of salt-stressed Raphanus sativus[J]. Plant physiology and biochemistry, 2021,169:160-170. | 
																													
																						| [18] | DURE L, GREENWAY S C, GALAU G A. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis[J]. Biochemistry, 1981, 20(14):4162-4168.  doi: 10.1021/bi00517a033    
																																																	pmid: 7284317
 | 
																													
																						| [19] | ZHOU Y, HE P, XU Y, et al. Overexpression of CsLEA11, a Y 3 SK 2 -type dehydrin gene from cucumber (Cucumis sativus), enhances tolerance to heat and cold in Escherichia coli[J]. Amb express, 2017, 7(1):182. | 
																													
																						| [20] | ALTUNOGLU Y C, BALOGLU M C, BALOGLU P, et al. Genome-wide identification and comparative expression analysis of LEA genes in watermelon and melon genomes[J]. Physiology & molecular biology of plants an international journal of functional plant biology, 2017, 23(1):5. | 
																													
																						| [21] | XU M, TONG Q, WANG Y, et al. Transcriptomic analysis of grapevine LEA gene family in response to osmotic and cold stress, and functional analyses of VamDHN3 gene[J]. Plant and cell physiology, 2020, 61(4):775-786. | 
																													
																						| [22] | KOVACS D, AGOSTON B, TOMPA P. Disordered plant LEA proteins as molecular chaperones[J]. Plant signaling & behavior, 2008, 3(9): 710-713. | 
																													
																						| [23] | JIN X, CAO D, WANG Z, et al. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses[J]. Scientific reports, 2019, 9(1): 14123. | 
																													
																						| [24] | LIU H, XING M, YANG W, et al. Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum)[J]. Scientific reports, 2019, 9(1): 13375. | 
																													
																						| [25] | MA L, ZHU T, WANG H, et al. Genome-wide identification, phylogenetic analysis and expression profiling of the late embryogenesis-abundant (LEA) gene family in Brachypodium distachyon[J]. Functional plant biology, 2021, 48(4):386-401. | 
																													
																						| [26] | LIU Y, XIE L, LIANG X, et al. CpLEA5, the late embryogenesis abundant protein gene from chimonanthus praecox, possesses low temperature and osmotic resistances in prokaryote and eukaryotes[J]. International journal of molecular sciences, 2015, 16(11): 26978-26990.  doi: 10.3390/ijms161126006    
																																																	pmid: 26569231
 |