欢迎访问《中国农学通报》,

中国农学通报 ›› 2014, Vol. 30 ›› Issue (33): 150-155.doi: 10.11924/j.issn.1000-6850.2014-0792

• 生物技术科学 • 上一篇    下一篇

化学杀菌剂对木霉菌厚垣孢子萌发及菌丝生长的抑制作用

张林,蒋细良,杨晓燕,李梅,陈书华   

  1. 中国农业科学院,中国农业科学院植物保护研究所,中国农业科学院植物保护研究所,,国家生物农药质量监督检验中心
  • 收稿日期:2014-03-21 修回日期:2014-03-21 接受日期:2014-05-19 出版日期:2015-01-08 发布日期:2015-01-08
  • 通讯作者: 张林
  • 基金资助:
    公益性行业专项“草地病害防治技术研究与示范”(201303057);948 项目“植物病虫害生物防治技术的引进与利用”(2011-G4)。

Inhibition of Chlamydospore Germination and Mycelial Growth of Trichoderma spp. by Chemical Fungicides

张林,,, and   

  • Received:2014-03-21 Revised:2014-03-21 Accepted:2014-05-19 Online:2015-01-08 Published:2015-01-08

摘要: 为探索化学杀菌剂的施用与残留对木霉菌厚垣孢子制剂的影响,本研究采用孢子萌发抑制法和菌丝生长速率法研究7种常用化学杀菌剂对2株生防木霉菌哈茨木霉610(Trichoderma harzianum 610)和长枝木霉758(T. longibrachiatum 758)厚垣孢子萌发和菌丝生长的影响。结果显示,多菌灵、戊唑醇、苯醚甲环唑的抑制作用较强,五氯硝基苯、甲霜灵的抑制作用较弱,福美双、萎锈灵的抑制作用中等。木霉菌菌丝生长比厚垣孢子萌发对杀菌剂更加敏感。不同木霉菌菌株对杀菌剂敏感性差异较大,7种杀菌剂对610孢子萌发的抑制作用比758强,但多数杀菌剂对610菌丝生长的抑制作用则比758弱。98%多菌灵对610厚垣孢子萌发和菌丝生长的抑制作用最强(EC50分别为1.64和0.05 μg/mL),70%五氯硝基苯的抑制作用最弱(EC50分别为681.82和1266.00 μg/mL)。98%多菌灵对758厚垣孢子萌发的抑制作用最强(EC50 0.62 μg/mL),甲霜灵的抑制作用最弱(EC50为1108.61 μg/mL)。96.2%戊唑醇对758菌丝生长的抑制作用最强(EC50 0.32 μg/mL),95%甲霜灵的抑制作用最弱(EC50 1206.29 μg/mL)。结合各杀菌剂的使用浓度,施用木霉菌610和758厚垣孢子制剂防治病害时,不能与多菌灵、戊唑醇、福美双与萎锈灵结合使用,并且上述4种农药残留可能影响木霉菌剂的防效,可与五氯硝基苯、苯醚甲环唑结合使用。758厚垣孢子制剂可与甲霜灵结合使用,610孢子萌发后可与甲霜灵结合使用。五氯硝基苯、苯醚甲环唑、甲霜灵的农药残留对木霉菌剂的影响不大。

关键词: 应用, 应用

Abstract: For exploring the influence of application and residue of chemical fungicides on chlamydospore preparations of Trichoderma spp., the effect of seven chemical fungicides on chlamydospore germination and mycelia growth of two biocontrol fungi T. harzianum 610 and T. longibrachiatum 758 were studied. Carbendazim, tebuconazole, difenoconazole showed strong toxicities, thiram and carboxin showed moderate toxicities, pentachloronitrobenzene and metalaxyl showed weak toxicities to the tested two strains. Mycelia growth of the two strains was more sensitive to most tested fungicides than those of chlamydospore germination. Chlamydospore germination of 610 was more sensitive to tested fungicides than those of 758, and mycelia growth of 758 was more sensitive to most tested fungicides than those of 610. Among the seven fungicides, 98% carbendazim had the strongest effects (EC50 values were 1.64 and 0.05μg/mL), and 70% pentachloronitrobenzene had the weakest effects (EC50 values were 1.64 and 0.05μg/mL) for chlamydospore germination and mycelia growth of 610. As for 758, 98% carbendazim had the strongest inhibitory effects and 95% metalaxyl had the weakest inhibitory for chlamydospore germination of 758 (EC50 values were 0.62 and 1108.61μg/mL respectively), whereas 96.2% tebuconazole showed the strongest inhibitory effects for mycelia growth of 758 (EC50 value was 0.32μg/mL), and 95% metalaxyl was the weakest (EC50 value was 1206.29μg/mL). According to the applied concentration of different fungicides in practice, we concluded that chlamydospore preparations of 610 and 758 could not be combined with carbendazim, tebuconazole, thiram and carboxin for controlling plant diseases, and the pesticide residues to the biocontrol effects should be kept in mind. Chlamydospore preparations of 610 and 758 can be combined with pentachloronitrobenzene, difenoconazole for controlling plant diseases, 758 chlamydospore preparations and germinated chlamydospore of 610 can be combined with metalaxyl for controlling plant diseases, and pesticide residue risk is not serious.