中国农学通报 ›› 2015, Vol. 31 ›› Issue (31): 104-118.doi: 10.11924/j.issn.1000-6850.casb15060014
宣继萍,王 刚,贾展慧,郭忠仁
收稿日期:
2015-06-02
修回日期:
2015-07-23
接受日期:
2015-08-11
出版日期:
2015-11-16
发布日期:
2015-11-16
通讯作者:
郭忠仁
基金资助:
Received:
2015-06-02
Revised:
2015-07-23
Accepted:
2015-08-11
Online:
2015-11-16
Published:
2015-11-16
摘要: 李属植物果实营养丰富,为人类提供了大量的营养物质,但是其果实采后迅速软化,导致果实品质下降、不耐贮藏及货架期短。为了解李属植物果实成熟软化的研究概况,本研究归纳总结了李属植物果实成熟过程中包括呼吸作用、乙烯释放、品质相关物质变化在内的生理变化,细胞壁结构、物质成分变化、细胞壁降解相关酶在内的细胞壁变化,果实成熟软化相关的基因及果实成熟软化蛋白质组学研究进展,并提出了存在的问题及未来研究趋势。指出目前李属植物果实成熟软化研究集中于果实采收后或贮藏期间细胞壁物质成分、结构变化及细胞壁降解相关酶,如多聚半乳糖醛酸酶、β-半乳糖苷酶等的活性变化,及这些酶的基因克隆、功能分析,指出结合转录组学、蛋白质组学、代谢组学和基因组学等几种组学将是李属植物果实成熟软化研究的发展方向。
中图分类号:
宣继萍,王 刚,贾展慧,郭忠仁. 李属植物果实成熟软化研究进展[J]. 中国农学通报, 2015, 31(31): 104-118.
[1] 朱明月,沈文涛,周鹏.果实成熟软化机理研究进展[J].分子植物育种,2005,3(3):421-426. [2] Giovannoni J. Genetic regulation of fruit development and ripening [J]. The Plant Cell online,2004,16(suppl 1):170-180. [3] Giobannoni J. Fruit ripening mutants yield insights into ripening control[J]. Current Opinion in Plant Biology,2007,10(3):283-289.. [4] Hamilton A J, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast[J]. Proceedings of the National Academy of Sciences,1991,88(16):7434-7437. [5] Vander S D, WIEMEERSCH L, Goodman H M, et al. Purification and partial characterization of 1-aminocyclopropane-1-carboxylate synthase from tomato pericarp[J]. European Journal of Biochemistry,1989,182(3):639-647. [6] Dong J G, Kim W T, Yip W K, et al. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit[J]. Planta,1991,185(1):38-45. [7] Tatsuki M, Haji T, Yamaguchi M. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening[J]. Journal of Experimental Botany,2006,57(6):1281-1289. [8] Mu?oz-Robredo P, RubioP, InfanteR, et al. Ethylene biosynthesis in apricot: Identification of a ripening-related aminocyclopropane-1-carboxylic acid synthase (ACS) gene[J]. Postharvest Biology and Technology,2012,63(1):85-90. [9] 任杰,冷平.ABA 和乙烯与甜樱桃果实成熟的关系[J].园艺学报,2010,37(2):199-206. [10] Leclercq J, Adams-Phillips L C, Zegzouti H, et al. LeCTR1, a Tomato CTR1-Like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato[J]. Plant Physiology,2002,130(3):1132-1142. [11] Wang J, Chen G, Hu Z, et al. Cloning and characterization of the EIN2-homology gene LeEIN2 from tomato: Full Length Research Article[J]. Mitochondrial DNA,2007,18(1):33-38. [12] Yin X, Allan A C, Chen K, et al. Kiwifruit EIL and ERF genes involved in regulating fruit ripening[J]. Plant Physiology,2010,153(3):1280-1292. [13] Zhao C P, Zhi J H, Han M Y, et al. Characterization of Pp-CTR1 gene expression during fruit development and ripening in peach (Prunus persica)[J]. European Journal of Horticultural Science,2013,78(6): 241-248. [14] 吴艳艳.甜樱桃果实中五个乙烯信号转导基因的克隆及其表达[D].泰安:山东农业大学,2011:26-41. [15] Bianco L, Lopez L, Scalone A G, et al. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes[J].J Proteomics,2009,72(4):586-607. [16] Deytieux C, Geny L, Lapaillerie D, et al.Proteome analysis of grape skins during ripening[J]. Journal of Experimental Botany, 2007,58(7):185l-l862 [17] Toledo T T, Nogueira S B, Cordenunsi, B R, et al. Proteomic analysis of banana fruit reveals proteins that are differentially accumulated during ripening [J]. Postharvest Biology and Technology,2012,70:51-58. [18] Nilo R, Saffie C, Lilley K, et al. Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE)[J]. BMC Genomics,2010,11(1):43. [19] 阚娟,谢海艳,金昌海.桃果实成熟软化过程中生理特性及细胞壁超微结构的变化[J].江苏农业学报,2012,28(5):1125-1129. [20] 胡留申,纪仁芬,李培环,等.硬肉桃果实成熟前后呼吸和淀粉酶活性变化及其与硬度的关系[J].江苏农业科学,2013,41(2):152-153. [21] 吴大军,陈妙金,陈克明,等.不同水蜜桃品种果实的生理品质评价[J].浙江农业学报,2009,21(4):362-365. [22] 刘明橞,李堂察,吕明雄,等. 梅采收后果实生理与品质之变化[J].台湾园艺,2010,56(3):157-169. [23] 赵瑞平,白殿海.香白杏贮藏试验初探[J].北方园艺,2008,(6):217-218. [24] 李萍.新疆杏果实发育期及采后生理生化机理研究[D].乌鲁木齐:新疆农业大学,2013:22-30. [25] Zhao Y, Collins H P, Knowles N R, et al. Respiratory activity of ‘Chelan’, ‘Bing’ and ‘Selah’ sweet cherries in relation to fruit traits at green, white-pink, red and mahogany ripening stages[J]. Scientia Horticulturae,2013,161:239-248. [26] Sisler E C,Serek M. Inhibitors of ethylene responses in plants at the receptor level: recent developments[J].Physiologia Plantarum,1997,100(3):577-582. [27] 金昌海,阚娟,索标,等. 桃果实成熟软化过程中α-L-阿拉伯呋喃糖苷酶活性和乙烯合成相关因子的变化[J].食品科学,2006,27(1):61-64. [28] 阚娟,车婧,刘俊,等.李果实成熟软化过程中生理特性及乙烯合成变化的研究[J].扬州大学学报(农业与生命科学版),2012,33(2):67-72. [29] 苏素香,赵彩平,曹丽军,等.两种不同耐贮性桃果实采后乙烯合成和果实软化相关基因表达的差异[J].农业生物技术学报,2015,23(4):450-458. [30] Amoros A,Serek C,Sibel G. The importance of ethylene in the development and ripening of apricots Bulide[J]. Hort Abst,1991,61(2):1116. [31] 牛景,赵剑波,吴本宏,等.不同来源桃种质果实糖酸组分含量特点的研究[J].园艺学报,2006,33(1):6-11. [32] 陈美霞,陈学森,慈志娟,等.杏果实糖酸组分及其不同发育阶段的变化[J].园艺学报,2006,33(4):805-808. [33] 沈志军,马瑞娟,俞明亮,等. 桃果实发育过程中主要糖及有机酸含量的变化分析[J].华北农学报,2007.22(6):130-135 [34] 姜凤超,王玉柱,孙浩元,等. 桃果实细胞内糖酸分布对果实甜酸风味的影响[J].西北植物学报,2014,34(6);1227-1232. [35] Usenik V, Stampar F, Kastelec D. Phytochemicals in fruits of two Prunus domestica L. plum cultivars during ripening[J]. Journal of the Science of Food and Agriculture, 2013, 93(3): 681-692. [36] 贾展慧,张计育,宣继萍,等. 槜李和油?果实品质比较分析[J].中国南方果树,2014,43(3):110-112,113. [37] Byme D H, Nikolic A N, Burns E E. Variability in sugars, acids, firmness, and color charaeteristics of 12 peach genotypes[J]. Journal of the American Society for Horticultural Science,1991,116(6):1004-1006. [38] Usenik V, Kastelec D, Veberi? R, et al. Quality changes during ripening of plums (Prunus domestica L.)[J]. Food Chemistry, 2008, 111(4): 830-836. [39] 赵树堂,关军锋,孟庆瑞,等. 李果实发育过程中糖、酸、维生素C含量的变化[J].果树学报,2004,21(6):612-614. [40] Kang S Y, Seeram N P, Nair M G, et al. Tart cherry anthocyanins inhibit tumor development in ApcMin mice and reduce proliferation of human colon cancer cells[J]. Cancer Letters,2003, 194(1):13-19. [41] Tall J M, Seeram N P, Zhao C, et al. Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat[J]. Behavioural Brain Research,2004,153(1):181-188. [42] Yoo K M, Al-Farsi M, Lee H, et al. Antiproliferative effects of cherry juice and wine in Chinese hamster lung fibroblast cells and their phenolic constituents and antioxidant activities[J]. Food Chemistry,2010,123(3):734-740. [43] Serra A T, Duarte R O, Bronze M R, et al. Identification of bioactive response in traditional cherries from Portugal[J]. Food Chemistry, 2011,125(2):318-325. [44] Lozano M, Vidal-Aragón M C, Hernández M T, et al. Physicochemical and nutritional properties and volatile constituents of six Japanese plum (Prunus salicina Lindl.) cultivars[J]. European Food Research and Technology,2009,228(3):403-410. [45] Andreotti C, Ravaglia D, Ragaini A, et al. Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation[J]. Annals of Applied Biology, 2008, 153(1): 11-23. [46] Usenik V, Stampar F, Fajt N. Pomological and phenological characteristics of some autochthonous Slovenian plum cultivars[J]. Acta Horticulturae,2007,34:53-59. [47] Díaz‐Mula H M, Zapata P J, Guillén F, et al. Changes in physicochemical and nutritive parameters and bioactive compounds during development and on-tree ripening of eight plum cultivars: a comparative study[J]. Journal of the Science of Food and Agriculture,2008,88(14): 2499-2507. [48] Puerta-Gomez A F, Cisneros-Zevallos L. Postharvest studies beyond fresh market eating quality: Phytochemical antioxidant changes in peach and plum fruit during ripening and advanced senescence [J]. Postharvest Biology and Technology,2011,60(3):220-224. [49] Scordino M, Sabatino L, Muratore A, et al. Phenolic characterization of Sicilian yellow flesh peach (Prunus persica L.) cultivars at different ripening stages [J]. Journal of Food Quality,2012,35:255–262. [50] Prvulovi? D, Malen?i? D, Popovi? M, et al. Antioxidant Properties of Sweet Cherries (Prunus avium L.)-Role of Phenolic Compounds [J]. World Academy of Science, Engineering and Technology,2011,5(11):687-690. [51] BENNETT A B, LABAVITCH J M. Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins[J]. Plant Science,2008,175(1):130-136. [52] 茅林春,应铁进.桃果实絮败与果胶质变化和细胞壁结构的关系[J].植物生理学报.1999.25(2):121- 126. [53] 陈安均,罗云波.不同熟期桃果实超微结构及相关代谢的研究[J].果树学报,2002,19(1): 67- 69. [54] 孙芳娟. 采收成熟度对油桃果实贮藏效应和果肉细胞超微结构的影响研究[D]. 杨陵:西北农林科技大学,2007:28. [55] Taylor M A, Rabe E, Jacobs G, et al. Physiological and anatomical changes associated with ripening in the inner and outer mesocarp of cold stored 'Songold' plums and concomitant development of internal disorders[J]. Journal of Horticultural Science (United Kingdom),1993,68:911-918. [56] 陆胜民,席屿芳.采后处理对梅果细胞超微结构的影响[J].食品科学,2001,22(6): 62- 63. [57] Dawson D M, Melton L D, Watkins C B. Cell wall changes in nectarines (Prunus persica) solubilization and depolymerization of pectic and neutral polymers during ripening and in mealy fruit[J]. Plant Physiology,1992,100(3):1203-1210. [58] 周培根,罗祖友,戚晓玉,等.桃成熟期间果实软化与果胶及有关酶的关系[J].南京农业大学学报,1992,14(2):33-37. [59] 胡留申,董晓颖,李培环,等. 桃果实成熟前后细胞壁成分和降解酶活性的变化及其与果实硬度的关系[J].植物生理学通讯.2007,43(5):837-841. [60] 王滨,李培环,董晓颖,等.不同溶质桃果实成熟前后及采后激素处理下硬度和果胶含量的变化[J].青岛农业大学学报(自然科学版),2013,30(3):174-178. [61] Zhang L, Chen F, Yang H, et al. Changes in firmness, pectin content and nanostructure of two crisp peach cultivars after storage[J]. LWT-Food Science and Technology,2010,43(1):26-32.. [62] 赵胜锦.中国櫻桃的果实软化生理及贮藏性研究[J].杭州:浙江大学,2014:8-10 [63] 阚娟,刘涛,金昌海,等.硬溶质型桃果实成熟过程中细胞壁多糖降解特性及其相关酶研究[J].食品科学,2011,32(4):268-274. [64] 薛炳烨.肥城桃和草莓果实发育成熟软化生理机理的研究[D].泰安:山东农业大学,2002: 41. [65] Chen F, Zhang L, An H, et al. The nanostructure of hemicellulose of crisp and soft Chinese cherry (Prunus pseudocerasus L.) cultivars at different stages of ripeness[J]. LWT-Food Science and Technology,2009,42(1):125-130. [66] Poovaiah B W, Nukaya A. Polygalacturonase and cellulase enzymes in the normal Rutgers and mutant rin tomato fruits and their relationship to the respiratory climacteric[J]. Plant Physiology,1979,64(4): 534-537. [67] Brummell D A. Cell wall metabolism during maturation, ripening and senescence of peach fruit[J]. Journal of Experimental Botany,2004,55:2029-2039. [68] 薛炳烨,束怀瑞.肥城桃两品系果实细胞壁成分和水解酶活性的比较[J].园艺学报,2004,31(4):499-501. [69] 阚娟,金昌海,汪志君,等. β-半乳糖苷酶及多聚半乳糖醛酸酶对桃果实成熟软化的影响[J].扬州大学学报,2006,27(3):76-80. [70] 徐晓波.李果实成熟过程中细胞壁多糖的降解和相关酶的研究[D].扬州:扬州大学, 2008:45. [71] Ghiani A, Negrini N, Morgutti S, et al. Melting of ‘Big Top’nectarine fruit: some physiological, biochemical, and molecular aspects[J]. Journal of the American Society for Horticultural Science,2011,136(1):61-68. [72] 王阳光,陆胜民,马子骏,等.青梅果实采后的软化特性与色泽变化[J].果树学报,2002,19(3):171-174. [73] Barrett D M, Gonzalez G. Activity of softening enzymes during cherry maturation[J]. Journal of Food Science, 2004,59(3):574-577. [74] 陆胜民,席芳,张耀洲.梅果采后软化与细胞壁组分及其降解酶活性的变化[J].中国农业科学,2003,36(5):595-598. [75] Jin Changhai, Kan Juan, Wang Zhijun, et al. Activities of β-Galactosidase and α-L-arabinofuranosidase, ethylene biosynthetic enzymes during peach ripening and softening [J]. Journal of Food Processing and Preservation,2006,30:515–526. [76] 金昌海,索标,阚娟,等.桃果实成熟软化过程中细胞壁多糖降解特性的研究[J].扬州大学学报(农业与生命科学版),2006, 27(3):70-75. [77] Andrews P K, Li S L. Cell wall hydrolytic enzyme activity during development of nonclimacteric sweet cherry (Prunus avium L.) fruit[J]. Journal of Horticultural Science,1995,70(4):561-567. [78] Bonghi C, Ferrarese L, Ruperti B, et al. Endo-β-l,4-glucanases are involved in peaeh fruit growth and ripening, and regulated by ethylene[J]. Physiologia Plantarum,1998,102(3):346-352. [79] Fobel M, Lynch D V, Thompson J E. Membrane Deterioration in Senescing Carnation Flowers Coordinated Effects of Phospholipid Degradation and the Action of Membranous Lipoxygenase[J]. Plant Physiology,1987,85(1):204-211. [80] 吴敏,陈昆松,张上隆,等.桃果实采后脂氧合酶活性和膜脂脂肪酸组分的变化[J].园艺学报,2001,28(3) :218-222. [81] Hadfield K A, Bennett A B. Polygalacturonases: many genes in search of a function[J]. Plant Physiology,1998,117(2):337-343. [82] Kim J, Shiu S H, Thoma S, et al. Patterns of expansion and expression divergence in the plant polygalacturonase gene family[J]. Genome Biology,2006,7(9): R87:1-14. [83] Bird C R, Smith C J S, Ray J A, et al. The tomato polygalacturonase gene and ripening-specific expression in transgenic plants[J]. Plant Molecular Biology,1988,11:651-662. [84] 马庆虎,王莉梅,宋艳茹,等.肥城桃中多聚半乳糖醛酸酶基因的分离及其表达研究[J].植物学报,1999,41(3):263 -267. [85] 陈鑫.桃多聚半乳糖醛酸酶(PG)基因克隆及反义表达载体的构建[D].兰州:甘肃农业大学,2009:31-34. [86] Iglesias-Fernández R, Matilla A J, Rodriguez-Gacio M C, et al. The polygalacturonase gene PdPG1 is developmentally regulated in reproductive organs of Prunus domestica L. subsp. insititia[J]. Plant Science,2007,172(4):763-772. [87] Leida C, Ríos G, Soriano J M, et al.Identification and genetic characterization of an ethylene-dependent polygalacturonase from apricot fruit[J]. Postharvest Biology and Technology,2011,62:26-34. [88] Morgutti S,Negrini N,Nocito F F,et al. Changes in endopolygalacturonaselevels and characterizationofaputative endo-PG gene during fruit softening in peach genotypes、vim nonmelting and melting flesh fruit phenotypes[J].New Phytologist,2006,171(2):315-328. [89] Murayama H, Arikawa M, Sasaki Y, et al. Effect of ethylene treatment on expression of polyuronide-modifying genes and solubilization of polyuronides during ripening in two peach cultivars having different softening characteristics[J]. Postharvest Biology and Technology, 2009, 52(2): 196-201. [90] Sheehy R E, Kramer M, Hiatt W R. Reduction of polygalacturonase activity in tomato fruit by antisense RNA[J]. Proceedings of the National Academy of Sciences,1988,85(23):8805-8809. [91] Smith C J S, Watson C F, Morris P C, et al. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes[J]. Plant Molecular Biology,1990,14(3): 369-379. [92] 张亚林.桃再生体系的优化与反义PG基因遗传转化的研究[D].兰州:甘肃农业大学,2010:38-42. [93] 李红双,崔德才.利用多聚半乳糖醛酸酶反义基因转化选育耐贮中国樱桃[J].生物技术通讯, 2006,17(6): 885-887. [94] Gaffe J, Tieman D M, Handa A K. Pectin methylesterase isoforms in tomato (Lycopersicon esculentum) tissues (effects of expression of a pectin methylesterase antisense gene)[J]. Plant Physiology,1994,105(1):199-203. [95] Phan T D, Bo W, West G, et al. Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening[J]. Plant Physiology,2007,144(4):1960-1967. [96] Pressey R. β-Galactosidases in ripening tomatoes[J]. Plant Physiology,1983,71(1):132-135. [97] Andrews P K, Li S. Partial Purification and Characterization of. beta.-D-Galactosidase from Sweet Cherry, a Nonclimacteric Fruit[J]. Journal of Agricultural and Food Chemistry,1994,42(10): 2177-2182. [98] Gerardi C, Blando F, Santino A. Purification and chemical characterisation of a cell wall-associated β-galactosidase from mature sweet cherry (Prunus avium L.) fruit[J]. Plant Physiology and Biochemistry,2012,61:123-130. [99] Carey A T, Holt K, Picard S, et al. Tomato exo-(1-> 4)-[beta]-D-galactanase (isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone)[J]. Plant Physiology,1995,108(3):1099-1107. [100] Ross G S, Wegrzyn T, MacRae E A, et al. Apple [beta]-Galactosidase (Activity against Cell Wall Polysaccharides and Characterization of a Related cDNA Clone)[J]. Plant Physiology,1994,106(2):521-528. [101] 陈昆松,张上隆,Ross G S. β-半乳糖苷酶基因在猕猴桃果实成熟过程的表达[J].植物生理学报,2000,26(2):117-122. [102] Tateishi A, Inoue H, Shiba H, et al. Molecular cloning of β-galactosidase from Japanese pear (Pyrus pyrifolia) and its gene expression with fruit ripening[J]. Plant and Cell Physiology,2001,42(5):492-498. [103] 王晓飞.若干核果类果树及番木瓜β -半乳糖苷酶同源基因的克隆[D].福州:福建农林大学,2005:16-24. [104] 卞伟华,江昌俊,王朝霞。桃叶片β -半乳糖苷酶基因全长cDNA克隆及原核表达[J].园艺学报,2006,33(4) :721-724. [105] 徐秋红.中国李果实软化相关基因的克隆及表达分析[D].南京:南京农业大学,2009:46-47. [106] Smith D L, Starrett D A, Gross K C. A Gene Coding for Tomato Fruit β-Galactosidase II Is Expressed during Fruit Ripening Cloning, Characterization, and Expression Pattern[J]. Plant Physiology, 1998, 117(2): 417-423. [107] Nobile P M, Wattebled F, Quecini V, et al. Identification of a novel α-L-arabinofuranosidase gene associated with mealiness in apple[J]. Journal of Experimental Botany,2011,62(12):4309-4321. [108] Tateishi A, Mori H, Watari J, et al. Isolation, characterization, and cloning of α-L-arabinofuranosidase expressed during fruit ripening of Japanese pear[J]. Plant Physiology, 2005, 138(3): 1653-1664. [109] Ilina N, Alem H J, Pagano E A, et al. Suppression of ethylene perception after exposure to cooling conditions delays the progress of softening in ‘Hayward’kiwifruit[J]. Postharvest Biology and Technology, 2010, 55(3): 160-168. [110] Hayama H, Shimada T, Fujii H, et al. Ethylene-regulation of fruit softening and softening-related genes in peach[J]. Journal of Experimental Botany, 2006, 57(15): 4071-4077. [111] Di Santo M C, Pagano E A, Sozzi G O. Differential expression of α-l-arabinofuranosidase and α-l-arabinofuranosidase/β-d-xylosidase genes during peach growth and ripening[J]. Plant Physiology and Biochemistry,2009,47(7):562-569. [112] Zhuang J P, Su J, Li X P, et al. Changes in α-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening[J]. Journal of Plant Physiology and Molecular Biology,2007,33(2):131-136. [113] Di Santo M C, Ilina N, Pagano E A, et al. A Japanese plum α-l-arabinofuranosidase/β-d-xylosidase gene is developmentally regulated by alternative splicing[J]. Plant Science, 2015, 231: 173-183. [114] Tonutti P, Bonghi C, Vidrih R, et al. Biochemical and molecular aspects of peach fruit ripening.In:Hribar J, Johnson D S, Bohling H. The post- harvest treatment of fruit and vegetables: quality criteria proceedings of a workshop. Slovenia:1994: 101-104. [115] Haji T, Yaegaki H, Yamaguchi M. Changes in ethylene production and flesh firmness of melting, nonmelting and stony hard peaches [Prunus persica] after harvest[J]. Journal of the Japanese Society for Horticultural Science (Japan), 2001. [116] Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annual Review of Plant Physiology,1984,35(1):155-189. [117] Olson D C, White J A, Edelman L, et al. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits[J]. Proceedings of the National Academy of Sciences,1991,88(12):5340-5344. [118] Mita S, Kirita C, Kato M, et al. Expression of ACC synthase is enhanced earlier than that of ACC oxidase during fruit ripening of mume (Prunus mume)[J]. Physiologia Plantarum,1999, 107(3):319-328. [119] El-Sharkawy I, Kim W S, Jayasankar S, et al. Differential regulation of four members of the ACC synthase gene family in plum[J]. Journal of Experimental Botany,2008,59(8):2009-2027. [120] Mu?oz-Robredo P, Rubio P, Infante R, et al. Ethylene biosynthesis in apricot: Identification of a ripening-related aminocyclopropane-1-carboxylic acid synthase (ACS) gene[J]. Postharvest Biology and Technology,2012,63(1):85-90. [121] Bregoli A M, Ziosi V, Biondi S, et al. Postharvest 1-methylcyclopropene application in ripening control of ‘Stark Red Gold’ nectarines: Temperature-dependent effects on ethylene production and biosynthetic gene expression, fruit quality, and polyamine levels[J]. Postharvest Biology and Technology,2005,37(2):111-121. [122] Oeller P W, Lu M W, Taylor L P, et al. Reversible inhibition of tomato fruit senescence by antisense RNA[J]. Science,1991,254(5030):437-439. [123] Dong J G, Olson D, Silverstone A, et al. Sequence of a cDNA coding for a 1-aminocyclopropane-1-carboxylate oxidase homolog from apple fruit[J]. Plant Physiology,1992,98(4):1530-1531. [124] Colin W B, Macdiami D, Richard C, et al. A cDNA sequence from kiwifruit homologous to 1-Aminocyclopropane-1-carboxylic acid oxidase[J ]. Plant Physiology,1993,101(2):691-692. [125] 徐培华,李唯,杨德龙,等.桃果实ACC氧化酶基因的克隆及序列分析[J].华北农学报,2010,25(2):44-50. [126] 金勇丰,张耀洲.桃ACC 氧化酶基因的克隆和植物表达载体的构建[J].园艺学报,1998,25 (1) : 3-43. [127] Mathooko F M, Tsunashima Y, Owino W Z O, et al. Regulation of genes encoding ethylene biosynthetic enzymes in peach (Prunus persica L.) fruit by carbon dioxide and 1-methylcyclopropene[J]. Postharvest Biology and Technology,2001,21(3):265-281. [128] Fernández-Otero C, Matilla A J, Rasori A, et al. Regulation of ethylene biosynthesis in reproductive organs of damson plum (Prunus domestica L. subsp. Syriaca)[J]. Plant Science, 2006, 171(1): 74-83. [129] Ruperti B, Bonghi C, Rasori A, et al. Characterization and expression of two members of the Peach 1‐aminocyclopropane‐1‐carboxylate oxidase gene family[J]. Physiologia Plantarum,2001,111(3):336-344. [130] Callahan A, Scorza R. Effects of a peach antisense ACC oxidase gene on plum fruit quality[J]. Acta Hort, 2007,738: 567-573. [131] Wang X, Kong H, Ma H. F-box proteins regulate ethylene signaling and more[J]. Genes Development, 2009, 23(4): 391-396. [132] 魏绍冲,陈昆松,罗云波.乙烯受体与果实成熟调控[J].园艺学报,2004,31(4):543-548. [133] Adams-Phillips L, Barry C, Kannan P, et al. Evidence that CTR1-mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features[J]. Plant Molecular Biology,2004,54(3):387-404. [134] Tieman D M, Ciardi J A, Taylor M G, et al. Members of the tomato LeEIL(EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development[J]. The Plant Journal,2001,26(1):47-58. [135] Yokotani N, Tamura S, Nakano R, et al. Characterization of a novel tomato EIN3-like gene (LeEIL4)[J]. Journal of Experimental Botany,2003,54(393): 2775-2776. [136] Yin X, Chen K, Allan A C, et al. Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit[J]. Journal of Experimental Botany,2008,59(8):2097-2108. [137] Pang J H, Ma B, Sun H J, et al. Identification and characterization of ethylene receptor homologs expressed during fruit development and ripening in persimmon (Diospyros kaki Thumb.)[J]. Postharvest Biology and Technology,2007,44(3):195-203. [138] Mbéguié-A-Mbéguié D, Hubert O, Fils-Lycaon B, et al. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine)[J]. Physiologia Plantarum,2008,133(2):435-448. [139] Rasori A, Ruperti B, Bonghi C, et al. Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission[J]. Journal of Experimental Botany,2002,53(379):2333-2339. [140] 智军海.桃(Prunnus peisica (L) Batsch.)乙烯信号转导途径基因CTR1和EIN2的克隆与表达分析[D].杨陵:西北农林科技大学,2010:6-30. [141] El-Sharkawy I, Kim W S, El-Kereamy A, et al. Isolation and characterization of four ethylene signal transduction elements in plums (Prunus salicina L.)[J]. Journal of Experimental Botany,2007,58(13):3631-3643. [142] El-Sharkawy I, Sherif S, Mila I, et al. Molecular characterization of seven genes encoding ethylene-responsive transcriptional factors during plum fruit development and ripening[J]. Journal of Experimental Botany,2009,60:907-922. [143] Bonghi C, Rasovi A, Ziliotto F, et al. Characterization and expression of two genes encoding ethylene receptors in peach fruit[J]. Acta Horticulturae,2002,592:583-588. [144] Brummell D A, Harpster M H, Civello P M, et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening[J]. The Plant Cell Online,1999,11(11):2203-2216. [145] Mbéguié-A-Mbéguié D, Gouble B, Gomez R M, et al. Two expansin cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene[J]. Plant Physiology and Biochemistry,2002,40(5):445-452. [146] Hyama H, Ito A, Moriguchi T, et al. Identification of a new expansin gene closely associated with peach fruit softening[J]. Postharvest Biology and Technology,2003,29(1):1-10. [147] Hayama H, Shimada T, Fujii H, et al. Ethylene-regulation of fruit softening and softening-related genes in peach[J]. Journal of Experimental Botany,2006,57(15):4071-4077. [148] Hossain M A, Nakamura K, Kimura Y. α-Mannosidase involved in turnover of plant complex type N-glycans in tomato (Lycopersicum esculentum) fruits[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(1):140-146. [149] 罗川,曹丽军,赵彩平,等.耐贮性不同桃果实采后软化过程中α-甘露糖苷酶活性变化[J]. 西北农业学报,2013,22(10):116-1l9. [150] 罗川,曹丽军,赵彩平,等.桃沙红果实α-甘露糖苷酶基因(α-man)克隆及其在软化过程中的表达分析[J].农业生物技术学报,2013,21(9):1060-1067. [151] Agrawal G K, Yonekura M, Iwahashi Y, et al. System, trends and perspectives of proteomics in dicot plants: Part II: Proteomes of the complex developmental stages[J]. Journal of Chromatography B, 2005, 815(1): 125-136. [152] Ziosi V, Scaramagli S, Bregoli A M, et al. Peach (Prunus persica L.) fruit growth and ripening: transcript levels and activity of polyamine biosynthetic enzymes in the mesocarp[J]. Journal of Plant Physiology,2003,160(9):1109-1115. [153] Bianco L, Lopez L, Scalone A G, et al. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes[J]. Journal of Proteomics,2009,72(4):586-607. [154] Deytieux C, Geny L, Lapaillerie D, et al. Proteome analysis of grape skins during ripening[J]. Journal of Experimental Botany,2007,58(7):1851-1862. [155] Faurobert M, Mihr C, Bertin N, et al. Major proteome variations associated with cherry tomato pericarp development and ripening[J]. Plant Physiology, 2007,143(3):1327-1346. [156] Zheng Q, Song J, Campbell-Palmer L, et al. A proteomic investigation of apple fruit during ripening and in response to ethylene treatment[J]. Journal of Proteomics, 2013, 93:276-294. [157] Toledo T T, Nogueira S B, Cordenunsi B R, et al. Proteomic analysis of banana fruit reveals proteins that are differentially accumulated during ripening[J]. Postharvest Biology and Technology,2012,70:51-58. [158] Zhang L, Jiang L, Shi Y, et al. Post-harvest 1-methylcyclopropene and ethephon treatments differently modify protein profiles of peach fruit during ripening[J]. Food Research International,2012,48(2):609-619. [159] Prinsi B, Negri A S, Fedeli C, et al. Peach fruit ripening: A proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages[J]. Phytochemistry, 2011, 72(10): 1251-1262. [160] Abdi N, Holford P, McGlasson B. Application of two-dimensional gel electrophoresis to detect proteins associated with harvest maturity in stonefruit[J]. Postharvest Biology and Technology,2002,26(1):1-13. [161] D'Ambrosio C, Arena S, Rocco M, et al. Proteomic analysis of apricot fruit during ripening[J]. Journal of Proteomics,2013,78: 39-57. [162] Nilo R P, Campos-Vergas R, Orellana A. Assenssment of Prunus persica fruit softening using a proteomics approach[J]. Journal of Proteomics,2012,75(5):1618-1638. [163] Hu H, Liu Y, Shi G L, et al. Proteomic analysis of peach endocarp and mesocarp during early fruit development[J]. Physiologia Plantarum,2011,142(4):390-406. [164] Qin G, Meng X, Wang Q, et al. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis[J]. Journal of Proteome Research,2009,8(5): 2449-2462. [165] Grimplet J, Romieu C, Audergon J M, et al. Transcriptomic study of apricot fruit (Prunus armeniaca) ripening among 13 006 expressed sequence tags[J]. Physiologia Plantarum,2005, 125(3):281-292. [166] Martínez-Esteso M J, Casado-Vela J, Sellés-Marchart S, et al. iTRAQ-based profiling of grape berry exocarp proteins during ripening using a parallel mass spectrometric method[J]. Molecular BioSystems,2011,7(3):749-765. [167] Martínez-Esteso M J, Vilella-Antón M T, Pedre?o M á, et al. iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening[J]. BMC Plant Biology,2013,13(1):167. |
[1] | 金梅娟, 佘旭东, 沈明星, 陆长婴, 陶玥玥, 王海候. 稻田构建垄型土槽耦合基质栽培草莓的生产效应研究[J]. 中国农学通报, 2023, 39(1): 71-76. |
[2] | 周冬冬, 张军, 葛梦婕, 刘忠红, 朱晓欢, 李春燕. 不同氮肥处理对稻茬晚播小麦‘淮麦36’产量、氮素利用率和品质的影响[J]. 中国农学通报, 2023, 39(1): 1-7. |
[3] | 武迪, 张锋, 隋春莹, 师君慧, 万雪洁, 刘义国, 韩伟, 师长海. 外源活性物质对小麦苗期抗逆性的影响[J]. 中国农学通报, 2022, 38(9): 14-19. |
[4] | 王福玉, 陈贵菊, 孙雷明, 黄玲, 邵敏敏, 赵凯, 杨本洲, 张玉丹, 闫璐, 王霖. 耕作方式与施氮量互作对小麦生长、产量与品质的影响[J]. 中国农学通报, 2022, 38(9): 20-26. |
[5] | 陈英花, 白如霄, 王娟, 张新疆, 刘玲慧, 刘小龙, 冯国瑞, 危常州. 叶面喷施烯效唑和硼对塔额盆地甜菜产量和含糖率的影响[J]. 中国农学通报, 2022, 38(9): 41-48. |
[6] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[7] | 王强强, 杨自辉, 郭树江, 张剑挥, 王多泽. 灌水量对民勤干旱沙区骏枣生长和产量的影响[J]. 中国农学通报, 2022, 38(9): 71-74. |
[8] | 周小红. 基于多元回归分析的农作物产量估测模型研究[J]. 中国农学通报, 2022, 38(8): 152-156. |
[9] | 秦乃群, 马巧云, 高敬伟, 杨璞, 蔡金兰, 郝迎春, 李艳梅, 冀洪策, 廖祥政. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
[10] | 武志斌, 黄超, 雷媛, 敬峰, 刘战东. 不同产量水平下冬小麦水肥利用特性研究[J]. 中国农学通报, 2022, 38(8): 64-71. |
[11] | 郑本川, 张锦芳, 蒋俊, 崔成, 柴靓, 黄友涛, 周正鉴, 李浩杰, 蒋梁材. 不同熟期“川油”系列甘蓝型油菜品种主要性状与产量的相关分析[J]. 中国农学通报, 2022, 38(7): 7-17. |
[12] | 付焱焱, 李云峰, 韩冬, 马树庆. 吉林省粮食主产区玉米生长季水分盈亏及其对产量的影响[J]. 中国农学通报, 2022, 38(7): 99-105. |
[13] | 姜佳, 陈金鹏, 魏江桥, 郭旭昊, 车志平, 田月娥, 陈根强, 刘圣明. 咯菌腈与戊唑醇复配对小麦赤霉病菌的增效作用研究[J]. 中国农学通报, 2022, 38(6): 116-120. |
[14] | 钮力亚, 王伟伟, 张玉洁, 邹景伟, 王志, 陆莉, 王奉芝, 王伟, 于亮. 小麦品质性状及产量性状对馒头面条评分的影响[J]. 中国农学通报, 2022, 38(6): 129-133. |
[15] | 姚金保, 杨学明, 周淼平, 张鹏. 江苏省小麦参试品种(系)产量与产量构成因素分析[J]. 中国农学通报, 2022, 38(6): 15-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||