中国农学通报 ›› 2020, Vol. 36 ›› Issue (27): 1-5.doi: 10.11924/j.issn.1000-6850.casb20190800542
所属专题: 水稻
• 农学·农业基础科学 • 下一篇
刘静妍(), 闫双勇, 张融雪, 苏京平, 孙玥, 孙林静(
)
收稿日期:
2019-08-15
修回日期:
2019-09-27
出版日期:
2020-09-25
发布日期:
2020-09-23
通讯作者:
孙林静
作者简介:
刘静妍,女,1986年出生,天津人,助理研究员,博士,博士后,从事水稻响应温度的功能研究。通信地址:300384 天津市西青区津静公路17公里处 天津市农作物研究所,Tel:022-83744846,E-mail: 基金资助:
Liu Jingyan(), Yan Shuangyong, Zhang Rongxue, Su Jingping, Sun Yue, Sun Linjing(
)
Received:
2019-08-15
Revised:
2019-09-27
Online:
2020-09-25
Published:
2020-09-23
Contact:
Sun Linjing
摘要:
水稻是中国最重要的粮食作物之一,低温寒害作为主要非生物胁迫,严重影响了水稻的产量和品质,对水稻的各个生长时期都有不同程度的危害。研究水稻耐低温的分子机制,培育高产优质的耐寒品种对保障中国粮食安全具有重要意义。为了进一步揭示水稻耐低温分子机制,本研究综述了近几十年来水稻低温信号途径研究方面的研究进展,发现在水稻的种子萌发期、幼苗期及孕穗期均克隆了若干个重要的耐低温基因,并初步解析了其基因功能和分子机制。但具体的作用机制及信号通路研究仍存在不足。今后的研究工作还需要发掘更多水稻耐寒基因及其作用机制,并鉴定重要的SNP位点,以期为水稻分子育种提供科学依据。
中图分类号:
刘静妍, 闫双勇, 张融雪, 苏京平, 孙玥, 孙林静. 水稻耐低温研究重要进展[J]. 中国农学通报, 2020, 36(27): 1-5.
Liu Jingyan, Yan Shuangyong, Zhang Rongxue, Su Jingping, Sun Yue, Sun Linjing. Low Temperature Tolerance of Rice: A Review[J]. Chinese Agricultural Science Bulletin, 2020, 36(27): 1-5.
[1] |
Gross B L, Zhao Z. Archaeological and genetic insights into the origins of domesticated rice[J]. Proc Natl Acad Sci USA, 2014,111(17):6190-6197.
doi: 10.1073/pnas.1308942110 URL pmid: 24753573 |
[2] |
Xie G, Kato H, Imai R. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice[J]. Biochem J, 2012,443(1):95-102.
doi: 10.1042/BJ20111792 URL pmid: 22248149 |
[3] | Zhang Q, Chen Q, Wang S, et al. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice (N Y), 2014,7:24. |
[4] |
Zhao J, Zhang S, Yang T, et al. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms[J]. Physiol Plant, 2015,154(3):381-394.
URL pmid: 25263631 |
[5] |
Liu C T, Wang W, Mao B G, et al. Cold stress tolerance in rice: physiological changes, molecular mechanism, and future prospects[J]. Yi Chuan, 2018,40(3):171-185.
URL pmid: 29576541 |
[6] |
Thomashow M F. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:571-599.
URL pmid: 15012220 |
[7] |
Ding Y, Shi Y, Yang S. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytol, 2019,222(4):1690-1704.
doi: 10.1111/nph.15696 URL pmid: 30664232 |
[8] |
Liu J, Shi Y, Yang S. Insights into the regulation of C-repeat binding factors in plant cold signaling[J]. J Integr Plant Biol, 2018,60(9):780-795.
URL pmid: 29667328 |
[9] |
Medina J, Catala R, Salinas J. The CBFs: three arabidopsis transcription factors to cold acclimate[J]. Plant Sci, 2011,180(1):3-11.
URL pmid: 21421341 |
[10] |
Shi Y, Ding Y, Yang S. Molecular Regulation of CBF Signaling in Cold Acclimation[J]. Trends Plant Sci, 2018,23(7):623-637.
doi: 10.1016/j.tplants.2018.04.002 URL pmid: 29735429 |
[11] | Miquel, M, James Jr D, Dooner H, et al. Arabidopsis requires polyunsaturated lipids for low-temperature survival[J]. Proc Natl Acad Sci U S A, 1993,90(13):6208-6212. |
[12] |
Thorlby G, Fourrier N, Warren G. The SENSITIVE TO FREEZING2 gene, required for freezing tolerance in Arabidopsis thaliana, encodes a beta-glucosidase[J]. Plant Cell, 2004,16(8):2192-2203.
doi: 10.1105/tpc.104.024018 URL pmid: 15258268 |
[13] |
Moellering E R, Muthan B, Benning C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane[J]. Science, 2010,330(6001):226-228.
doi: 10.1126/science.1191803 URL pmid: 20798281 |
[14] |
Ma Y, Dai X, Xu Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015,160(6):1209-1221.
doi: 10.1016/j.cell.2015.01.046 URL pmid: 25728666 |
[15] |
Kumar S V, Wigge P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell, 2010,140(1):136-147.
doi: 10.1016/j.cell.2009.11.006 URL pmid: 20079334 |
[16] |
Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Mol Biol Rep, 2012,39(2):969-987.
doi: 10.1007/s11033-011-0823-1 URL pmid: 21573796 |
[17] |
Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997,94(3):1035-1040.
doi: 10.1073/pnas.94.3.1035 URL pmid: 9023378 |
[18] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998,10(8):1391-1406.
doi: 10.1105/tpc.10.8.1391 URL pmid: 9707537 |
[19] |
Jia Y, Ding Y, Shi Y, et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis[J]. New Phytol, 2016,212(2):345-353.
doi: 10.1111/nph.14088 URL pmid: 27353960 |
[20] |
Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2004,101(11):3985-3990.
URL pmid: 15004278 |
[21] |
Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. Proc Natl Acad Sci U S A, 2007,104(52):21002-21007.
URL pmid: 18093929 |
[22] |
Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annu Rev Plant Biol, 2006,57:781-803.
URL pmid: 16669782 |
[23] |
Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003,17(8):1043-1054.
doi: 10.1101/gad.1077503 URL pmid: 12672693 |
[24] |
Dong C H, Agarwal M, Zhang Y, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proc Natl Acad Sci U S A, 2006,103(21):8281-8286.
doi: 10.1073/pnas.0602874103 URL pmid: 16702557 |
[25] |
Miura K, Jin J B, Lee J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell, 2007,19(4):1403-1414.
doi: 10.1105/tpc.106.048397 URL pmid: 17416732 |
[26] |
Ding Y, Li H, Zhang X, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Dev Cell, 2015,32(3):278-289.
doi: 10.1016/j.devcel.2014.12.023 URL pmid: 25669882 |
[27] |
Li H, Ding Y, Shi Y, et al. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis[J]. Dev Cell, 2017,43(5):630-642.
doi: 10.1016/j.devcel.2017.09.025 URL pmid: 29056553 |
[28] |
Zhao C, Wang P, Si T, et al. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability[J]. Dev Cell, 2017,43(5):618-629.
doi: 10.1016/j.devcel.2017.09.024 URL pmid: 29056551 |
[29] |
Agarwal M, Hao Y, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006,281(49):37636-37645.
doi: 10.1074/jbc.M605895200 URL pmid: 17015446 |
[30] |
Doherty C J, Van Buskirk H A, Myers S J, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009,21(3):972-984.
doi: 10.1105/tpc.108.063958 URL pmid: 19270186 |
[31] |
Fursova O V, Pogorelko G V, Tarasov V A. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana[J]. Gene, 2009,429(1-2):98-103.
doi: 10.1016/j.gene.2008.10.016 URL pmid: 19026725 |
[32] | Shi Y, Tian S, Hou L, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[J]. Plant Cell, 2012,24(6):2578-2595. |
[33] |
Vogel J T, Zarka D G, Van Buskirk H A, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. Plant J, 2005,41(2):195-211.
doi: 10.1111/j.1365-313X.2004.02288.x URL pmid: 15634197 |
[34] |
Zhang Z, Li J, Li F, et al. OsMAPK3 Phosphorylates OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and Enhances Rice Chilling Tolerance[J]. Dev Cell, 2017,43(6):731-743.
URL pmid: 29257952 |
[35] |
Guo X, Liu D, Chong K. Cold signaling in plants: Insights into mechanisms and regulation[J]. J Integr Plant Biol, 2018,60(9):745-756.
doi: 10.1111/jipb.12706 URL |
[36] |
Ramirez V E, Poppenberger B. MAP Kinase Signaling Turns to ICE[J]. Dev Cell, 2017,43(5):545-546.
doi: 10.1016/j.devcel.2017.10.032 URL pmid: 29207256 |
[37] |
Choi J Y, Platts A E, Fuller D Q, et al. The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice[J]. Mol Biol Evol, 2017,34(4):969-979.
doi: 10.1093/molbev/msx049 URL pmid: 28087768 |
[38] |
Civan P, Craig H, Cox C J, et al. Three geographically separate domestications of Asian rice[J]. Nat Plants, 2015,1:15164.
doi: 10.1038/nplants.2015.164 URL pmid: 27251535 |
[39] |
Huang X, Kurata N, Wei X, et al. A map of rice genome variation reveals the origin of cultivated rice[J]. Nature, 2012,490(7421):497-501.
doi: 10.1038/nature11532 URL pmid: 23034647 |
[40] |
Lu G, Wu F Q, Wu W, et al. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature[J]. Plant J, 2014,78(3):468-480.
doi: 10.1111/tpj.12487 URL pmid: 24635058 |
[41] |
Lv Y, Guo Z, Li X, et al. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis[J]. Plant Cell Environ, 2016,39(3):556-570.
doi: 10.1111/pce.12635 URL pmid: 26381647 |
[42] |
Shakiba E, Edwards J D, Jodari F, et al. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis[J]. PLoS One, 2017,12(3):e0172133.
doi: 10.1371/journal.pone.0172133 URL pmid: 28282385 |
[43] | Wang D, Liu J, Li C, et al. Genome-wide Association Mapping of Cold Tolerance Genes at the Seedling Stage in Rice[J]. Rice (N Y), 2016,9(1):61. |
[44] |
Fujino K, Sekiguchi H, Matsuda Y, et al. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice[J]. Proc Natl Acad Sci USA, 2008,105(34):12623-12628.
doi: 10.1073/pnas.0805303105 URL pmid: 18719107 |
[45] |
Wang X, Zou B, Shao Q, et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. J Exp Bot, 2018,69(3):413-421.
doi: 10.1093/jxb/erx413 URL pmid: 29237030 |
[46] |
Civan P, Brown T A. Role of genetic introgression during the evolution of cultivated rice (Oryza sativa L.)[J]. BMC Evol Biol, 2018,18:57.
doi: 10.1186/s12862-018-1180-7 URL pmid: 29688851 |
[47] |
Wang W, Mauleon R, Hu Z, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice[J]. Nature, 2018,557(7703):43-49.
URL pmid: 29695866 |
[48] |
Wang P, Yang C, Chen H, et al. Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L.[J]. BMC Plant Biol, 2018,18:202.
doi: 10.1186/s12870-018-1417-z URL pmid: 30231862 |
[49] |
E Z G, Zhang Y P, Zhou J H, et al. Mini review roles of the bZIP gene family in rice[J]. Genet Mol Res, 2014,13(2):3025-3036.
doi: 10.4238/2014.April.16.11 URL |
[50] |
Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis[J]. Trends Plant Sci, 2002,7(3):106-111.
doi: 10.1016/s1360-1385(01)02223-3 URL pmid: 11906833 |
[51] | Kawahara Y, de la Bastide M, Hamilton J P, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J]. Rice (N Y), 2013,6:4. |
[52] |
Nijhawan A, Jain M, Tyagi A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiol, 2008,146(2):333-350.
doi: 10.1104/pp.107.112821 URL pmid: 18065552 |
[53] |
Sornaraj P, Luang S, Lopato S, et al. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function[J]. Biochim Biophys Acta, 2016,1860(1 Pt A):46-56.
doi: 10.1016/j.bbagen.2015.10.014 URL pmid: 26493723 |
[54] |
Liu C, Ou S, Mao B, et al. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nat Commun, 2018,9:3302.
doi: 10.1038/s41467-018-05753-w URL pmid: 30120236 |
[55] |
Zhang Z, Li J, Pan Y, et al. Natural variation in CTB4a enhances rice adaptation to cold habitats[J]. Nat Commun, 2017,8:14788.
doi: 10.1038/ncomms14788 URL pmid: 28332574 |
[1] | 白玛仁增, 顿玉多吉, 德例归吉, 德吉央宗, 益西多吉, 边巴次仁. 星-地结合对水稻高温热害监测模型的研究[J]. 中国农学通报, 2023, 39(1): 133-141. |
[2] | 罗先富, 刘文强, 潘孝武, 董铮, 刘三雄, 刘利成, 阳标仁, 盛新年, 李小湘. 应用剩余杂合体衍生的近等基因系定位水稻株高QTL[J]. 中国农学通报, 2022, 38(9): 1-5. |
[3] | 黄钰, 陈斌, 肖关丽. 云南哈尼族地方水稻‘月亮谷’对褐飞虱取食危害的生理反应[J]. 中国农学通报, 2022, 38(9): 123-129. |
[4] | 贾也纯, 陈润仪, 贺泽霖, 倪洪涛. 甜菜抗非生物胁迫研究进展[J]. 中国农学通报, 2022, 38(9): 33-40. |
[5] | 李兴华, 王欢, 张盛, 蔡星星, 周强, 周楠. 氮肥用量与运筹方式对晚籼稻产量及花后干物质积累与转运的影响[J]. 中国农学通报, 2022, 38(9): 6-13. |
[6] | 王一凡, 劳晓璨, 余丽萍, 叶海龙. 水稻‘甬优15’分期播种的气象条件适宜性试验研究[J]. 中国农学通报, 2022, 38(7): 106-109. |
[7] | 李雪枫, 王坚, 叶晓园, 张秀婷, 王丽学. 苦瓜植株水浸提液对水稻种子萌发和秧苗生长的影响[J]. 中国农学通报, 2022, 38(6): 1-7. |
[8] | 闫蕴韬, 何兮, 张海清, 贺记外. 水稻种子耐贮性研究进展[J]. 中国农学通报, 2022, 38(5): 1-8. |
[9] | 翟彩娇, 张蛟, 崔士友, 陈澎军. 盐逆境对耐盐水稻穗部性状及产量构成因素的影响[J]. 中国农学通报, 2022, 38(4): 1-9. |
[10] | 李荣田, 时柳, 黄丽莹, 刘长华. 利用分子选择培育水稻‘吉粳88’(hd2/hd4)导入系[J]. 中国农学通报, 2022, 38(33): 1-9. |
[11] | 伊嘉雯, 冯棣, 朱崴, 亓娜, 滕奉魁, 卢小引. 不同品种水稻发芽阶段耐盐性对比研究[J]. 中国农学通报, 2022, 38(33): 10-14. |
[12] | 张博, 石峰, 宋福强. AMF复合菌剂对寒地水稻光合作用和生长效应的影响[J]. 中国农学通报, 2022, 38(33): 15-22. |
[13] | 许丹阳, 李虹颖, 孙义祥, 邬刚, 王家宝, 袁嫚嫚, 王佩旋, 张祥明, 束孝海. 不同比例有机无机肥配施对水稻产量与氮素利用率的影响[J]. 中国农学通报, 2022, 38(31): 1-5. |
[14] | 王洋, 张瑞, 周雨晴, 刘永昊, 刘高生, 戴其根. 基于文献计量的国内水稻耐盐性研究态势分析[J]. 中国农学通报, 2022, 38(31): 147-153. |
[15] | 李舟, 杨雅云, 戴陆园, 张斐斐, 阿新祥, 董超, 王斌, 汤翠凤. 水稻白叶枯病抗性基因和相关因子研究利用进展[J]. 中国农学通报, 2022, 38(30): 91-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||