中国农学通报 ›› 2020, Vol. 36 ›› Issue (32): 49-54.doi: 10.11924/j.issn.1000-6850.casb191200944
所属专题: 生物技术
收稿日期:
2019-12-13
修回日期:
2020-02-05
出版日期:
2020-11-15
发布日期:
2020-11-19
通讯作者:
蔡柏岩
作者简介:
孙子欣,女,1998年出生,河南焦作人,硕士研究生,研究方向:修复生态学。通信地址:150080 黑龙江省哈尔滨市南岗区学府路74号黑龙江大学生命科学学院,E-mail: 基金资助:
Sun Zixin1,2(), Cai Baiyan1,2()
Received:
2019-12-13
Revised:
2020-02-05
Online:
2020-11-15
Published:
2020-11-19
Contact:
Cai Baiyan
摘要:
由于人口不断增长,人们要快速得到高产高质粮食的要求迫切,大量使用化肥,导致了有害物质残留,土壤或水污染,土壤板结或某些营养元素相对匮乏等一系列环境问题。丛枝菌根(Arbuscular mycorrhiza, AM)是土壤内常见的共生结构,由AM真菌(AMF)与土壤根系形成。已有研究表明其可通过分泌代谢物,增大根系与土壤接触面积,调节某些土壤元素存在形式等多种途径,影响植物对土壤元素的吸收转运。硫是维持植物生长发育的必需元素之一,可由于植物对S的需要并不如N,P,K大量,现代农业在对土壤进行施肥过程中往往将其忽略,因此土壤缺S正逐渐成为中国农业发展的限制因素。为了解决以上问题,本文将主要对AMF影响植物吸收土壤元素的途径及生理机制进行总结分析。并根据其作用方式特点进一步分析AM共生对植物吸收转运硫素的影响,指出AMF作为生物化肥的可行性,以期为解决现代化肥的替代问题以及土壤缺硫问题提供新的思路。
中图分类号:
孙子欣, 蔡柏岩. AMF促进植物吸收矿质元素的生理机制及对土壤硫素的影响[J]. 中国农学通报, 2020, 36(32): 49-54.
Sun Zixin, Cai Baiyan. Arbuscular mycorrhizal Fungi: Physiological Mechanism of Promoting Plant to Absorb Mineral Elements and Its Effect on Soil Sulfur[J]. Chinese Agricultural Science Bulletin, 2020, 36(32): 49-54.
[1] | 肖军, 秦志伟, 赵景波. 农田土壤化肥污染及对策[J]. 环境保护科学, 2005,31(5):32-34. |
[2] | 张夫道. 化肥污染的趋势与对策[J]. 环境科学, 1985(6):54-59. |
[3] |
Khan M H, Meghvansi M K, Gupta R, et al. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude[J]. Journal of Plant Physiology, 2015,189:105-112.
URL pmid: 26555273 |
[4] |
Keymer A, Gutjahr C. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond[J]. Current Opinion in Plant Biology, 2018,44:137-144.
doi: 10.1016/j.pbi.2018.04.005 URL pmid: 29729528 |
[5] |
Limpens E, Geurts R. Transcriptional Regulation of Nutrient Exchange in Arbuscular Mycorrhizal Symbiosis[J]. Molecular Plant, 2018,11(12):1421-1423.
URL pmid: 30447333 |
[6] | Ren A, Zhu Y, Chen Y, et al. Arbuscular mycorrhizal fungus alters root-sourced signal (abscisic acid) for better drought acclimation in Zea mays L. seedlings[J]. Environmental and Experimental Botany, 2019,167:103824. |
[7] | 黄京华, 孙晨瑜. 浅析AM共生的生态学意义[J]. 中南民族大学学报:自然科学版, 2018,37(4):45-50. |
[8] | 王茜, 王强, 王晓娟, 等. AM网络的生态学功能研究进展[J]. 应用生态学报, 2015,26(7):2192-2202. |
[9] | 吴洁婷, 王立, 赵磊, 等. 菌根真菌对芦苇铜吸收及抗铜能力的影响[J]. 生态环境学报, 2019,28(03):571-579. |
[10] | Kholmanskiy A, Smirnov A, Sokolov A, et al. Modeling of extraction mechanism of mineral elements by plants[J]. Current Plant Biology, 2019,19:100104. |
[11] |
Mathur S, Tomar R S, Jajoo A. Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress[J]. Photosynth Res, 2019,139(1-3):227-238.
URL pmid: 29982909 |
[12] | 祝英, 熊俊兰, 吕广超, 等. AM真菌与植物共生对植物水分关系的影响及机理[J]. 生态学报, 2015,35(8):2419-2427. |
[13] | Khalvati M A, Hu Y, Mozafar A, et al. Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress[J]. Plant biology (Stuttgart, Germany), 2005,7(6):706-712. |
[14] | Quiroga G, Erice G, Aroca R, et al. Contribution of the arbuscular mycorrhizal symbiosis to the regulation of radial root water transport in maize plants under water deficit[J]. Environmental and Experimental Botany, 2019,167:103821. |
[15] | 黄京华, 刘青, 李晓辉, 等. 丛枝菌根真菌诱导玉米根系形态变化及其机理[J]. 玉米科学, 2013,21(03):131-135. |
[16] | Cosme M, Wurst S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco[J]. Soil Biology and Biochemistry, 2013,57:436-443. |
[17] | 祖艳群, 卢鑫, 湛方栋, 等. AM真菌在土壤重金属污染植物修复中的作用及机理研究进展[J]. 植物生理学报, 2015,51(10):1538-1548. |
[18] |
Ghasemi Siani N, Fallah S, Pokhrel L R, et al. Natural amelioration of Zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin[J]. Plant Physiology and Biochemistry, 2017,112:227-238.
doi: 10.1016/j.plaphy.2017.01.001 URL pmid: 28107731 |
[19] | 冯海艳, 刘茵, 冯固, 等. 接种AM真菌对黑麦草吸收和分配Cd的影响[J]. 农业环境科学学报, 2005,24(3):426-431. |
[20] |
Debeljak M, van Elteren J T, Špruk A, et al. The role of arbuscular mycorrhiza in mercury and mineral nutrient uptake in maize[J]. Chemosphere, 2018,212:1076-1084.
URL pmid: 30286537 |
[21] | Kodre A, Arčon I, Debeljak M, et al. Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure[J]. Environmental and Experimental Botany, 2017,133:12-23. |
[22] | 曹岩坡, 代鹏, 戴素英, 等. AM真菌(AMF)对盐胁迫下芦笋幼苗生长及体内Na+、K+、Ca2+、Mg2+含量和分布的影响 [J]. 生态学杂志, 2015,34(06):1699-1704. |
[23] | 孙金华, 毕银丽, 裘浪, 等. 土壤中丛枝菌根真菌对宿主植物磷吸收作用机制综述[J]. 土壤通报, 2016,47(02):499-504. |
[24] | Eid K E, Abbas M H H, Mekawi E M, et al. Arbuscular mycorrhiza and environmentally biochemicals enhance the nutritional status of Helianthus tuberosus and induce its resistance against Sclerotium rolfsii[J]. Ecotoxicology and Environmental Safety, 2019,186:109783. |
[25] | Jiménez-Leyva J A, Gutiérrez A, Orozco J A, et al. Phenological and ecophysiological responses of Capsicum annuum var. glabriusculum to native arbuscular mycorrhizal fungi and phosphorus availability[J]. Environmental and Experimental Botany, 2017,138:193-202. |
[26] |
Sut M, Boldt-Burisch K, Raab T. Possible evidence for contribution of arbuscular mycorrhizal fungi (AMF) in phytoremediation of iron-cyanide (Fe-CN) complexes[J]. Ecotoxicology, 2016,25(6):1260-1269.
doi: 10.1007/s10646-016-1678-y URL pmid: 27256319 |
[27] | 李立青, 张明生, 梁作盼, 等. AM真菌促进入侵植物紫茎泽兰的生长和对本地植物竞争效应[J]. 生态学杂志, 2016,35(1):79-86. |
[28] | 王晓燕, 彭礼琼, 金则新. 模拟增温条件下接种AMF对夏蜡梅幼苗生长与光合生理特性的影响[J]. 生态学报, 2016,36(16):5204-5214. |
[29] | Barazetti A R, Simionato A S, Navarro M O P, et al. Formulations of arbuscular mycorrhizal fungi inoculum applied to soybean and corn plants under controlled and field conditions[J]. Applied Soil Ecology, 2019,142:25-33. |
[30] | Oyewole B O, Olawuyi O J, Odebode A C, et al. Influence of Arbuscular mycorrhiza fungi (AMF) on drought tolerance and charcoal rot disease of cowpea[J]. Biotechnol Rep (Amst), 2017,14:8-15. |
[31] | Yang Y, Liang Y, Han X, et al. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil[J]. Sci Rep, 2016,6:20469. |
[32] | Yang Y, Han X, Liang Y, et al. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynjournal, and Antioxidant Enzymes in Robinia pseudoacacia L.[J]. PLoS One, 2015,10(12):e145726. |
[33] | 王穗子, 金则新, 李月灵, 等. 铜胁迫条件下AMF对海州香薷光合色素含量、抗氧化能力和膜脂过氧化的影响[J]. 生态学报, 2015,35(23):7699-7708. |
[34] | Tuo X, Li S, Wu Q, et al. Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: Changes in chlorophyll and proline metabolism[J]. Scientia Horticulturae, 2015,197:130-134. |
[35] | Nowicka B, Ciura J, Szymańska R, et al. Improving photosynjournal, plant productivity and abiotic stress tolerance - current trends and future perspectives[J]. Journal of Plant Physiology, 2018,231:415-433. |
[36] |
Mathur S, Sharma M P, Jajoo A. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress[J]. J Photochem Photobiol B, 2018,180:149-154.
URL pmid: 29425887 |
[37] |
Toljander J F, Lindahl B D, Paul L R, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. FEMS microbiology ecology, 2007,61(2):295-304.
doi: 10.1111/j.1574-6941.2007.00337.x URL pmid: 17535297 |
[38] | 郭军康, 董明芳, 丁永祯, 等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 2015,24(7):1228-1234. |
[39] | Karimi K, Ahari A B, Weisany W, et al. Funneliformis mosseae root colonization affects Anethum graveolens essential oil composition and its efficacy against Colletotrichum nymphaeae[J]. Industrial Crops and Products, 2016,90:126-134. |
[40] | 张亮, 王晓娟, 王强, 等. 同位素示踪技术在AM真菌生态学研究中的应用[J]. 生态学报, 2016,36(10):2787-2797. |
[41] | 韦莉莉, 卢昌熠, 丁晶, 等. AM真菌参与下植物—土壤系统的养分交流及调控[J]. 生态学报, 2016,36(14):4233-4243. |
[42] | 陈永亮, 陈保冬, 刘蕾, 等. 丛枝菌根真菌在土壤氮素循环中的作用[J]. 生态学报, 2014,34(17):4807-4815. |
[43] | 宋圆圆, 夏明, 林熠斌, 等. AM真菌摩西管柄囊霉侵染增强番茄对机械损伤的响应[J]. 应用生态学报, 2018,29(11):3811-3818. |
[44] |
Rahim N A, Jais H M, Hassan H M. Environment and Host Affects Arbuscular Mycorrhiza Fungi (AMF) Population[J]. Trop Life Sci Res, 2016,27(supp1):9-13.
doi: 10.21315/tlsr2016.27.3.2 URL pmid: 27965735 |
[45] |
Sarah Symanczik, Pierre-Emmanuel Courty, Thomas Boller, et al. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species[J]. Mycorrhiza, 2015,25(8):639-647.
URL pmid: 25860835 |
[46] | Marzluf G A. Genetics and Molecular Genetics of Sulfur Assimilation in the Fungi[M]. Hall J C, Dunlap J C. Advances in Genetics. Academic Press, 1994: 187-206. |
[47] | 李国强, 朱云集, 沈学善. 植物硫素同化途径及其调控[J]. 植物生理学通讯, 2005,41(6):699-704. |
[48] | 孙金华, 毕银丽, 裘浪, 等. 土壤中丛枝菌根真菌对宿主植物磷吸收作用机制综述[J]. 土壤通报, 2016,47(02):499-504. |
[49] | Sharif M, Claassen N. Action Mechanisms of Arbuscular Mycorrhizal Fungi in Phosphorus Uptake by Capsicum annuum L.[J]. Pedosphere, 2011,21(4):502-511. |
[50] | Wipf D, Mongelard G, Van Tuinen D, et al. Transcriptional responses of Medicago upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis[J]. Frontiers in Plant Science, 2014,5(5):680. |
[51] |
Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply[J]. Frontiers in Plant Science, 2014,5:723.
doi: 10.3389/fpls.2014.00723 URL pmid: 25566295 |
[52] | 孙艳梅, 张前兵, 苗晓茸, 等. 解磷细菌和AM真菌对紫花苜蓿生产性能及地下生物量的影响[J]. 中国农业科学, 2019,52(13):2230-2242. |
[53] | Mohamed A A, Eweda W E E, Heggo A M, et al. Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions[J]. Annals of Agricultural Sciences, 2014,59(1):109-118. |
[54] | 范旭杪, 秦丽, 王吉秀, 等. 植物谷胱甘肽代谢与镉耐性研究进展[J]. 西部林业科学, 2019,48(04):50-56. |
[55] | Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply[J]. Frontiers in Plant Science, 2014,5:723. |
[56] | Klichowska E, Nobis M, Piszczek P, et al. Soil properties rather than topography, climatic conditions, and vegetation type shape AMF- feathergrass relationship in semi-natural European grasslands[J]. Applied Soil Ecology, 2019,144:22-30. |
[57] | Curtin D, Peterson M E, Anderson C R. pH-dependence of organic matter solubility: Base type effects on dissolved organic C, N, P, and S in soils with contrasting mineralogy[J]. Geoderma, 2016,271:161-172. |
[1] | 董寅壮, 王堽, 於丽华, 耿贵. 亚铁胁迫对甜菜幼苗矿质元素积累的影响[J]. 中国农学通报, 2022, 38(3): 11-16. |
[2] | 黄成, 李旭楠, 李诗燕, 王锦达. 植物SWEET基因家族的研究进展[J]. 中国农学通报, 2022, 38(17): 17-26. |
[3] | 王德美, 刘桂华, 范成五, 柴冠群, 罗沐欣键, 秦松. 黔产红托竹荪基地土壤-红托竹荪体系矿质元素含量及相关性分析[J]. 中国农学通报, 2022, 38(14): 72-76. |
[4] | 杨霞, 朱佳敏, 赵玉雪, 杨小红. 贵州喀斯特山区野生华榛土壤、叶片和果实矿质元素的相关性及通径分析[J]. 中国农学通报, 2022, 38(11): 7-14. |
[5] | 叶雯, 孙彩霞, 叶珏瑜, 徐明飞. 浙产糯味山药营养成分分析[J]. 中国农学通报, 2022, 38(1): 145-148. |
[6] | 曾端香, 王莲英. AM真菌对菌根化牡丹组培苗矿质元素吸收的影响[J]. 中国农学通报, 2022, 38(1): 53-58. |
[7] | 王连润, 万红, 陶磅, 陈霞, 吴定财, 丁仁展, 李卫芬, 沙毓沧, 李坤明. 4个野生猕猴桃优良单株果实矿质元素含量分析[J]. 中国农学通报, 2021, 37(3): 112-115. |
[8] | 陈吉, 蔡柏岩. 植物对硫素的吸收、转运及利用的研究进展[J]. 中国农学通报, 2021, 37(29): 42-46. |
[9] | 陈韩英, 祝奕炜, 葛高飞. 不同有机酸对黄褐土矿质元素活化作用的比较研究[J]. 中国农学通报, 2021, 37(24): 84-90. |
[10] | 巩峻豪, 陈建文, 车琴琴, 仇丽娜, 王永章. ‘富士’苹果果实主要矿质元素与苦痘病发生的关系[J]. 中国农学通报, 2020, 36(28): 137-142. |
[11] | 高翔, 范晓旭, 张淑贞, 宋福强. 除草剂施用对农田丛枝菌根(AM)真菌影响的研究进展[J]. 中国农学通报, 2020, 36(27): 129-134. |
[12] | 路成成, 蔡柏岩. AM真菌改善植物磷营养吸收和转运机制的研究进展[J]. 中国农学通报, 2020, 36(26): 50-54. |
[13] | 李长印, 胡承孝, 倪刚, 赵小虎. 马铃薯晚疫病防治措施研究进展[J]. 中国农学通报, 2020, 36(21): 155-159. |
[14] | 鲁珊珊,陈乒乒,刘 微,杨 艳,肖家欣. 干旱胁迫条件下AM真菌对蓝莓光合特性及矿质元素含量的影响[J]. 中国农学通报, 2019, 35(5): 31-35. |
[15] | 孟诗原,张瑛,张志浩,毕思圣,孔令刚,刘冠义,刘天英,宋承东,王华田,刘秀梅. 磁化水灌溉对保护地土壤质量及尖椒品质的影响[J]. 中国农学通报, 2019, 35(33): 116-123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||