[1] |
ZHU J K, LIU J, XIONG L. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition[J]. The plant cell, 1998, 10(7):1181-1191.
|
[2] |
CHINNUSAMY V, SCHUMAKER K, ZHU J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J]. Journal of experimental botany, 2004, 55(395):225-236.
doi: 10.1093/jxb/erh005
pmid: 14673035
|
[3] |
DANQUAH A, DE ZELICOURT A, COLCOMBET J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J]. Biotechnol adv, 2014, 32(1):40-52.
doi: 10.1016/j.biotechadv.2013.09.006
pmid: 24091291
|
[4] |
PIETERSE C M, VAN DER DOES D, ZAMIOUDIS C, et al. Hormonal modulation of plant immunity[J]. Annual review of cell and developmental biology, 2012,28:489-521.
|
[5] |
GRELET J, BENAMAR A, TEYSSIER E, et al. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying1[J]. Plant physiology, 2005,137:157-167.
|
[6] |
BRAY E A. Molecular responses to water deficit[J]. Plant physiol, 1993, 103(4):1035-1040.
pmid: 12231998
|
[7] |
UMEZAWA T, FUJITA M, FUJITA Y, et al. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future[J]. Current opinion in biotechnology, 2006, 17(2):113-122.
doi: 10.1016/j.copbio.2006.02.002
pmid: 16495045
|
[8] |
HINCHA D K, THALHAMMER A. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance[J]. Biochemical society transactions, 2012, 40(5):1000-1003.
pmid: 22988854
|
[9] |
张晓敏. 园林绿化植物沙棘的耐盐性研究及耐盐品种筛选[D]. 沈阳: 沈阳农业大学, 2021.
|
[10] |
GIANNOPOLITIS C N, RIES S K. Superoxide dismutases: i. occurrence in higher plants 1 2[J]. Plant physiology, 1977, 59(2):309.
doi: 10.1104/pp.59.2.309
pmid: 16659839
|
[11] |
THOMAS R L, JEN J J, MORR C V. Changes in solule and ound peroxidase, IAA oxidase during tamato fruit development[J]. Journal of food science, 1981,47:158-161.
|
[12] |
CAKMAK I, MARSCHNER H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves 1[J]. Plant physiology, 1992, 98(4):1222-1227.
doi: 10.1104/pp.98.4.1222
pmid: 16668779
|
[13] |
DHINDSA R S, PAMELA P D, THORPE T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase[J]. Journal of experimental botany, 1981(1):93-101.
|
[14] |
高俊凤. 植物生理学实验指导[M]. 植物生理学实验指导, 2006:219.
|
[15] |
LIANG W, MA X, WAN P, et al. Plant salt-tolerance mechanism: a review[J]. Biochemical and biophysical research communications, 2018, 495(1):286-291.
doi: S0006-291X(17)32220-9
pmid: 29128358
|
[16] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual review of plant biology, 2008, 59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911
pmid: 18444910
|
[17] |
HAJIHASHEMI S, SKALICKY M, BRESTIC M, et al. Effect of sodium nitroprusside on physiological and anatomical features of salt-stressed Raphanus sativus[J]. Plant physiology and biochemistry, 2021,169:160-170.
|
[18] |
DURE L, GREENWAY S C, GALAU G A. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis[J]. Biochemistry, 1981, 20(14):4162-4168.
doi: 10.1021/bi00517a033
pmid: 7284317
|
[19] |
ZHOU Y, HE P, XU Y, et al. Overexpression of CsLEA11, a Y 3 SK 2 -type dehydrin gene from cucumber (Cucumis sativus), enhances tolerance to heat and cold in Escherichia coli[J]. Amb express, 2017, 7(1):182.
|
[20] |
ALTUNOGLU Y C, BALOGLU M C, BALOGLU P, et al. Genome-wide identification and comparative expression analysis of LEA genes in watermelon and melon genomes[J]. Physiology & molecular biology of plants an international journal of functional plant biology, 2017, 23(1):5.
|
[21] |
XU M, TONG Q, WANG Y, et al. Transcriptomic analysis of grapevine LEA gene family in response to osmotic and cold stress, and functional analyses of VamDHN3 gene[J]. Plant and cell physiology, 2020, 61(4):775-786.
|
[22] |
KOVACS D, AGOSTON B, TOMPA P. Disordered plant LEA proteins as molecular chaperones[J]. Plant signaling & behavior, 2008, 3(9): 710-713.
|
[23] |
JIN X, CAO D, WANG Z, et al. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses[J]. Scientific reports, 2019, 9(1): 14123.
|
[24] |
LIU H, XING M, YANG W, et al. Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum)[J]. Scientific reports, 2019, 9(1): 13375.
|
[25] |
MA L, ZHU T, WANG H, et al. Genome-wide identification, phylogenetic analysis and expression profiling of the late embryogenesis-abundant (LEA) gene family in Brachypodium distachyon[J]. Functional plant biology, 2021, 48(4):386-401.
|
[26] |
LIU Y, XIE L, LIANG X, et al. CpLEA5, the late embryogenesis abundant protein gene from chimonanthus praecox, possesses low temperature and osmotic resistances in prokaryote and eukaryotes[J]. International journal of molecular sciences, 2015, 16(11): 26978-26990.
doi: 10.3390/ijms161126006
pmid: 26569231
|