[1] 李茹,陈鹏.细菌趋化性的信号传导及调节机制研究进展[J].生物技术通报,2011(11):54-57.
[2] 刘晓东,吴港,杨智敏,等. RpoN和RpoS参与细菌鞭毛合成与趋化调控的研究进展[J].江苏农业科学,2013(12):11-16.
[3] Adler J. Chemotaxis in Escherichia coli[J]. Cold Spring Harb Symp Quant Biol, 1965(30):289-292.
[4] Adler J. Amethod for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli[J]. J Gen Microbiol,1973(74):77-91.
[5] Adler J. Chemotaxis in bacteria[J]. Annu Rev Biochem,1975(44):341-356.
[6] Armstrong J B, Adler J, Dahl M M. Nonchemotactic mutants of Escherichia coli[J]. J Bacteriol,1967(93):390-398.
[7] Kort E N, Goy M F, Larsen S H, et al. Methylation of a membrane protein involved in bacterial chemotaxis[J]. Proc Natl Acad Sci USA,1975(72):3939-3943.
[8] Clarke S, Koshland D E J. Membrane receptors for aspartate and serine in bacterial chemotaxis[J]. J Biol Chem, 1979(254):9695-9702.
[9] Biemann H P, Koshland D E J. Aspartate receptors of Escherichia coli and Salmonella typhimurium bind ligand with negative and half-of-the-sites cooperativity[J]. Biochemistry,1994(33):629-634.
[10] Lin L N, Li J, Brandts J F, et al. The serine receptor of bacterial chemotaxis exhibits half-site saturation for serine binding[J]. Biochemistry,1994(33):6564-6570.
[11] Yeh J I, Biemann H P, Pandit J, et al. The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. Structural comparison to the cross-linked mutant forms and conformational changes upon ligand binding[J]. J Biol Chem,1993(268):9787-9792.
[12] Ottemann K M, Thorgeirsson T E, Kolodziej A F, et al. Direct measurement of small ligand-induced conformational changes in the aspartate chemoreceptor using EPR[J]. Biochemistry,1998(37):7062-7069.
[13] Ames P, Studdert C A, Reiser R H, et al. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli[J]. Proc Natl Acad Sci USA,2002(99):7060-7065.
[14] Kim K K, Yokota H, Kim S H. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor[J]. Nature,1999(400):787-792.
[15] Gestwicki J E, Lamanna A C, Harshey R M, et al. Evolutionary conservation of methyl-accepting chemotaxis protein location in Bacteria and Archaea[J]. J Bacteriol,2000(182):6499-6502.
[16] Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction[J]. Annu Rev Biochem ,2000(69):183-215.
[17] West A H, Stock A M. Histidine kinases and response regulator proteins in two-component signaling systems[J]. Trends Biochem Sci,2001(6):369-376.
[18] Boukhvalova M S, Dahlquist F W, Stewart R C. CheW binding interactions with CheA and Tar. Importance for chemotaxis signaling in Escherichia coli[J]. J Biol Chem,2002(277:22251-22259.
[19] Hess J F, Oosawa K, Kaplan N, et al. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis[J]. Cell,1988(53):79-87.
[20] Borkovich K A, Kaplan N, Hess J F, et al. Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer[J]. Proc Natl Acad Sci USA ,1989(86):1208-1212.
[21] Welch M, Oosawa K, Aizawa S, et al. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria[J]. Proc Natl Acad Sci USA ,1993(90):8787-8791.
[22] Buchan A, Crombie B, Alexandre G M. Temporal dynamics and genetic diversity of chemotactic-competent microbial populations in the rhizosphere[J]. Environmental Microbiology,2010,12(12):3171-3184.
[23] Dutta R, Qin L, Inouye M. Histidine kinases: diversity ofdomain organization[J]. Mol Microbiol ,1999(34):633-640.
[24] Schuster S C, Swanson R V, Alex L A, et al. Assembly and function of a quaternary signal transduction complex monitored by surface plasmon resonance[J]. Nature ,1993(365):343-347.
[25] Swanson R V, Bourret R B, Simon M I. Intermolecular complementation of the kinase activity of CheA[J]. Mol Microbiol,1993(8:435- 441.
[26] Wolfe A J, Stewart R C. The short form of the CheA protein restores kinase activity and chemotactic ability to kinase-deficient mutants[J]. Proc Natl Acad Sci USA ,1993(90):1518-1522.
[27] Ninfa E G, Stock A, Mowbray S, et al. Reconstitution of the bacterial chemotaxis signal transduction system from purified components[J]. J Biol Chem ,1991(266):9764-9770.
[28] Griswold I J, Dahlquist F W. The dynamic behavior of CheW from Thermotoga maritima in solution, as determined by nuclear magnetic resonance: implications for potential protein-protein interaction sites[J]. Biophys Chem,2002(101-102):359-373.
[29] Griswold I J, Zhou H, Matison M, et al. The solution structure and interactions of CheW from Thermotoga maritima[J]. Nat Struct Biol,2002(9):121-125.
[30] Roman S J, Meyers M, Volz K, et al. A chemotactic signaling surface on CheY defined by suppressors of flagellar switch mutations[J]. J Bacteriol ,1992(174):6247-6255.
[31] Sockett H, Yamaguchi S, Kihara M, et al. Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium[J]. J Bacteriol ,1992(174):793-806.
[32] Wylie D, Stock A, Wong C Y, et al. Sensory transduction in bacterial chemotaxis involves phosphotransfer between Che proteins[J]. Biochem Biophys Res Commun ,1988(51):891-896.
[33] Eisenbach M. Bacterial chemotaxis. In: Nature encyclopedia of life sciences[M]. London: Nature Publishing group,2000.
[34] Porter S L, Wadhams G H, Armitage J P. Signal processing in complex chemotaxis pathways[J]. Nature Reviews Microbiology, 2011,9(3):153-165.
[35] Packer H L, Armitage J P. The unidirectional flagellar motor of Rhodobacter sphaeroides WS8 can rotate either clockwise or counterclockwise: characterization of the flagellum under both conditions by antibody decoration[J]. J Bacteriol ,1993,175:6041-6045.
[36] Platzer J, Sterr W, Hausmann M, et al. Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti[J]. J Bacteriol ,1997(179):6391-6399.
[37] Springer M S, Goy M F, Adler J. Protein methylation in behavioural control mechanisms and in signal transduction[J]. Nature ,1979,280:279-284.
[38] 张蔚文,张灼.细菌化学趋向性机理的研究进展[J].微生物学报,1993(03):175-179.
[39] Borkovich K A, Alex L A, Simon M I. Attenuation of sensory receptor signaling by covalent modification[J]. Proc Natl Acad Sci USA,1992(89):6756-6760.
[40] Simms S A, Stock A M, Stock J B. Purification and characterization of the S-adenosylmethionine: glutamyl methyltransferase that modifies membrane chemoreceptor proteins in bacteria[J]. J Biol Chem ,1987(262):8537-8543.
[41] Bren A, Welch M, Blat Y, et al. Signal termination in bacterial chemotaxis: CheZ mediates dephosphorylation of free rather than switch-bound CheY[J]. Proceedings of the National Academy of Sciences of the United States of America,1996,93(19):10090-10093.
[42] Lupas A, Stock J. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis[J]. J Biol Chem ,1989(264):17337-17342.
[43] Stewart R C, Roth A F, Dahlquist F W. Mutations that affect control of the methylesterase activity of CheB, a component of the chemotaxis adaptation system in Escherichia coli[J]. J Bacteriol ,1990(172):3388-3399.
[44] Wu J, Li J, Li G, et al. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation[J]. Biochemistry,1996(35):4984-4993.
[45] Djordjevic S, Stock A M. Chemotaxis receptor recognition by protein methyltransferase CheR[J]. Nat Struct Biol ,1998(5):446-450.
[46] Djordjevic S, Goudreau P N, Xu Q, et al. Structural basis for methylesterase CheB regulation by a phosphorylation- activated domain[J]. Proc Natl Acad Sci USA ,1998(95:1381-1386.
[47] Ottemann K M, Miller J F. Roles for motility in bacterial-host interactions[J]. Mol Microbiol,1997(24):1109-1117.
[48] Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria[J]. Int J Med Microbiol,2002(291):605-614.
[49] Freter R. Mechanisms of association of bacteria with mucosal surfaces[J]. Ciba Found Symp ,1981(80):36-55.
[50] Freter R, O'Brien P C. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: chemotactic responses of Vibrio cholerae and description of motile nonchemotactic mutants[J]. Infect Immun,1981(34):215-221.
[51] Freter R, O'Brien P C. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice[J]. Infect Immun,1981(34):222-233.
[52] Akerley B J, Monack D M, Falkow S, et al. The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica[J]. J Bacteriol,1992(174):980-990.
[53] Akerley B J, Cotter P A, Miller J F. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction[J]. Cell,1995(80):611-620.
[54] Givaudan A, Lanois A. flhDC, the flagellar master operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects[J]. J Bacteriol, 2000(182):107-115.
[55] Hay N A, Tipper D J, Gygi D, et al. A nonswarming mutant of Proteus mirabilis lacks the Lrp global transcriptional regulator[J]. J Bacteriol,1997(179):4741-4746.
[56] Lee S H, Butler S M, Camilli A. Selection for in vivo regulators of bacterial virulence[J]. Proc Natl Acad Sci USA,2001(98):6889-6894.
[57] Sperandio V, Torres A G, Giron J A, et al. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7[J]. J Bacteriol,2001(183):5187-5197.
[58] Krukonis E S, DiRita V J. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae[J]. Curr Opin Microbiol,2003(6):186-190.
[59] Liaw S J, Lai H C, Ho S W, et al. Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis[J]. J Med Microbiol,2003(52):19-28.
[60] Xu Q, Dziejman M, Mekalanos J J. Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro[J]. Proc Natl Acad Sci USA, 2003(100):1286-1291.
[61] Lovell M A, Barrow P A. Intestinal colonisation of gnotobiotic pigs by Salmonella organisms: interaction between isogenic and unrelated strains[J]. J Med Microbiol,1999(48):907-916.
[62] Jones B D, Lee C A, Falkow S. Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation[J]. Infect Immun,1992(60):2475-2480.
[63] Tans-Kersten J, Huang H, Allen C. Ralstonia solanacearum needs motility for invasive virulence on tomato[J]. Journal of bacteriology, 2001, 183(12):3597-3605.
[64] Sandra d W, Vermeiren H, Mulders I H M, et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions,2002,15(11):1173-80
[65] 江威,牛彝,王琦.蜡样芽孢杆菌B905趋化性cheA基因的克隆及其定殖相关性[A]. 中国植物病理学会.中国植物病理学会2007年学术年会论文集[C].中国植物病理学会:,2007:1.
[66] 王淼,张莉,刘瑛,等.趋化性参与内生细菌336x在小麦根系的内生定殖[J].河南大学学报:自然科学版,2012,06:736-741.
|