[1]Hallmann J, Quadt-Hallmann A, Mahaffee W F, et al. Bacterial endophytes in agricultural crops[J]. Canadian Journal of Microbiology, 1997, 43(10): 895-914. [2]Mano H, Tanaka F, Watanabe A, et al. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field[J]. Microbes and Environments, 2006, 21(2): 86-100. [3]Ferrando L, Manay J F, Scavino A F. Molecular and culture-dependent analyses revealed similarities in the endophytic bacterial community composition of leaves from three rice (Oryza sativa) varieties[J]. FEMS Microbiology Ecology, 2012, 80(3): 696-708. [4]Palaniappan P, Chauhan P S, Saravanan V S, et al. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp[J]. Biology and Fertility of Soils, 2010, 46(8): 807-816. [5]de Melo Pereira G V, Magalh?es K T, Lorenzetii E R, et al. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion[J]. Microbial Ecology, 2012, 63(2): 405-417. [6]Rashid S, Charles T C, Glick B R. Isolation and characterization of new plant growth-promoting bacterial endophytes[J]. Applied Soil Ecology, 2012, 61: 217-224. [7]Khan A L, Waqas M, Kang S M, et al. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth[J]. Journal of Microbiology, 2014, 52(8): 689-695. [8]Kuklinsky-Sobral J, Araújo W L, Mendes R, et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion[J]. Environmental Microbiology, 2004, 6(12): 1244-1251. [9] Amaresan N, Jayakumar V, Kumar K, et al. Endophytic bacteria from tomato and chilli, their diversity and antagonistic potential against Ralstonia solanacearum[J]. Archives of Phytopathology and Plant Protection, 2012, 45(3): 344-355. [10]Zhang S M, Sha C Q, Wang Y X, et al. Isolation and characterization of antifungal endophytic bacteria from soybean[J].Microbiology, 2008, 35(10): 1593-1599. [11]Mcinroy J A, Kloepper J W. Survey of indigenous bacterial endophytes from cotton and sweet corn[J]. Plant and Soil, 1995, 173(2): 337-342. [12]Coombs J T, Franco C M M. Isolation and identification of actinobacteria from surface-sterilized wheat roots[J]. Applied and Environmental Microbiology, 2003, 69(9): 5603-5608. [13]Gyaneshwar P, James E K, Mathan N, et al. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens[J]. Journal of Bacteriology, 2001, 183(8): 2634-2645. [14]Krechel A, Faupel A, Hallmann J, et al. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid White) Chitwood[J]. Canadian Journal of Microbiology, 2002, 48(9): 772-786. [15]Schulz B J, Boyle C J, Sieber T N., et al. Microbial root endophytes[M]. Springer, 2006. 17-18. [16]Gardner J M, Feldman A W, Zablotowicz R M. Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees[J]. Applied and Environmental Microbiology, 1982, 43(6): 1335-1342. [17]Mendes R, Pizzirani-Kleiner A A, Araujo W L, et al. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates[J]. Applied and Environmental Microbiology, 2007, 73(22): 7259-7267. [18]Sun L, Qiu F, Zhang X, et al. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis[J]. Microbial Ecology, 2008, 55(3): 415-424. [19]文才艺, 吴元华, 田秀玲. 植物内生菌研究进展及其存在的问题[J]. 生态学杂志, 2004, 23(2): 86-91. [20]Hung P Q, Kumar S M, Govindsamy V, et al. Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties[J]. Biology and Fertility of Soils, 2007, 44(1): 155-162. [21]Germida J, Siciliano S. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars[J]. Biology and Fertility of Soils, 2001, 33(5): 410-415. [22]Siciliano S D, Germida J J. Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland[J]. FEMS Microbiology Ecology, 1999, 29(3): 263-272. [23]Misko A L, Germida J J. Taxonomic and functional diversity of Pseudomonads isolated from the roots of field-grown canola[J]. FEMS Microbiology Ecology, 2002, 42(3): 399-407. [24]Reiter B, Pfeifer U, Schwab H, et al. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica[J]. Applied and Environmental Microbiology, 2002, 68(5): 2261-2268. [25]Hallmann J, Quadt-Hallmann A, Kloepper J W. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber[J]. Soil Biology and Biochemistry, 1998, 30(7): 925-937. [26]Rosenblueth M, Martínez-Romero E. Bacterial endophytes and their interactions with hosts[J]. Molecular Plant-Microbe Interactions, 2006, 19(8): 827-837. [27]Gagné S, Richard C, Rousseau H, et al. Xylem-residing bacteria in alfalfa roots[J]. Canadian Journal of Microbiology, 1987, 33(11): 996-1000. [28]Schulz B J , Boyle C J, Sieber T N., et al. Microbial root endophytes[M]. Springer, 2006. 22. [29]Fuentes-Ram??rez L E, Caballero-Mellado J, Sepúlveda J, et al. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization[J]. FEMS Microbiology Ecology, 1999, 29(2): 117-128. [30]Tan Z, Hurek T, Reinhold-Hurek B. Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice[J]. Environmental Microbiology, 2003, 5(10): 1009-1015. [31]Seghers D, Wittebolle L, Top E M, et al. Impact of agricultural practices on the Zea mays L. endophytic community[J]. Applied and Environmental Microbiology, 2004, 70(3): 1475-1482. [32]Lamb T G, Tonkyn D W, Kluepfel D A. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue[J]. Canadian Journal of Microbiology, 1996, 42(11): 1112-1120. [33]Lodewyckx C, Vangronsveld J, Porteous F, et al. Endophytic bacteria and their potential applications[J]. Critical Reviews in Plant Sciences, 2002, 21(6): 583-606. [34]Reinhold-Hurek B, Hurek T. Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function[J]. Critical Reviews in Plant Sciences, 1998, 17(1): 29-54. [35]Beauchamp C J, Kloepper J W, Lemke P A. Luminometric analyses of plant root colonization by bioluminescent Pseudomonads[J]. Canadian Journal of Microbiology, 1993, 39(4): 434-441. [36]Gyaneshwar P, James E K, Mathan N, et al. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens[J]. Journal of Bacteriology, 2001, 183(8): 2634-2645. [37]Prieto P, Schilirò E, Maldonado-González M M, et al. Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity[J]. Microbial ecology, 2011, 62(2): 435-445. [38]Yasuda M, Isawa T, Shinozaki S, et al. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(12): 2595-2599. [39]Sheng X F, Xia J J, Jiang C Y, et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental Pollution, 2008, 156(3): 1164-1170. [40]Strobel G A. Endophytes as sources of bioactive products[J]. Microbes and Infection, 2003, 5(6): 535-544. [41]Sturz A V, Christie B R, Nowak J. Bacterial endophytes: potential role in developing sustainable systems of crop production[J]. Critical Reviews in Plant Sciences, 2000, 19(1): 1-30. [42]刘健, 李俊, 葛诚. 微生物肥料作用机理的研究新进展[J]. 微生物学杂志, 2001, 21(1): 33-36. [43]王家利, 刘冬成, 郭小丽, 等. 生长素合成途径的研究进展[J]. 植物学报, 2012, 47(3): 292-301. [44]赵晓菊, 胡敏, 梁彦涛, 等. 吲哚乙酸生物合成及其结合物水解的研究进展[J]. 中国农学通报, 2014, 30(6): 254-259. [45]Ona O, Smets I, Gysegom P, et al. The effect of pH on indole-3-acetic acid (IAA) biosynthesis of Azospirillum brasilense Sp7[J]. Symbiosis, 2003, 35(1-3): 199-208. [46]Zakharova E A, Iosipenko A D, Ignatov V V. Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense[J]. Microbiological Research, 2000, 155(3): 209-214. [47]Remans R, Beebe S, Blair M, et al. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.)[J]. Plant and Soil, 2008, 302(1-2): 149-161. [48]Pilet P E, Saugy M. Effect on root growth of endogenous and applied IAA and ABA[J]. Plant Physiology, 1987, 83(1): 33-38. [49]康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌的筛选及鉴定[J]. 微生物学报, 2010, 50(7): 853-861. [50]Molla A H, Shamsuddin Z H, Saud H M. Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasilense[J]. Communications in Soil Science and Plant Analysis, 2001, 32(13-14): 2177-2187. [51]Jain D K, Patriquin D G. Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs[J]. Canadian Journal of Microbiology, 1985, 31(3): 206-210. [52]Vaitilingom M, Gendre F, Brignon P. Direct detection of viable bacteria, molds, and yeasts by reverse transcriptase PCR in contaminated milk samples after heat treatment[J]. Applied and Environmental Microbiology, 1998, 64(3): 1157-1160. [53]Schena L, Nigro F, Ippolito A, et al. Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi[J]. European Journal of Plant Pathology, 2004, 110(9): 893-908.
|