[1] 和红云,田丽萍,薛琳.植物抗寒性生理生化研究进展[J].天津农业科学,2007,13(2):10-13.
[2] 郭子武,李宪利,高东升,等.植物低温胁迫响应的生化与分子生物学机制研究进展[J].中国生态农业学报,2004,12(2):54-57.
[3] 王会良,何华平,龚林忠,等.植物抗寒性研究进展[J].湖北农业科学,2011,50(6):1091-1094,1100.
[4] Lyons J M. Chilling injury in plants[J]. Annual Review of Plant Physiology,1973(24):445-466.
[5] Mc Cord J M. Fridovich I. Superoxide dismutase: an enzymatic function for erythrocuprein [J]. Journal of Biological Chenistry,1969(24):6049-6055.
[6] 王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459-465.
[7] Wilkins M R, Pasquali C, Appel R D, et al. From Proteins to Proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis[J]. Nature Biotechnology,1996,14(1):61-65.
[8] Meza-Basso, Alberdi L, Raynl M, et al. Changes in protein synthesis in rapeseed seedlings during a low temperature treatment[J]. Plant Physiology,1987(82):733-738.
[9] 赵军,赵玉田,梁博文.寒胁迫过程中冬小麦叶片组织可溶性蛋白含量的变化和功能[J].中国农业科学,1994,27(2):57-61.
[10] 席景会.低温胁迫下拟南芥差异蛋白质组学研究[D].长春:吉林大学,2007.
[11] 严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究[D].北京:中国科学院,2006.
[12] 盖英萍.棉花、烟草响应低温胁迫的差异蛋白质组学研究[D].泰安:山东农业大学,2008.
[13] Wettstein D, Simon G, Kannangara G C. Chlorophyll biosynthesis [J].Plant Cell, 1995,7:1039-1057.
[14] Liu X G, Xu H, Zhang J Y, et al. Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85[J]. Physiology Plant,2012,145(3):384-394.
[15] 潘瑞炽.植物生理学[M].北京:高等教育出版社,2001:57-66.
[16] Fiedor L, Rosenbach-Belkin V, Scherz A. The stereospecific interaction between chlorophylls and chlorophyllase. Possible implication for chlorophyll biosynthesis and degradation[J]. The Journal of Biological Chemistry,1992,267(31):22043-22047.
[17] 白青华,郭晓冬,王萍,等.低温对辣椒幼苗叶片氮及叶绿素含量的影响[J].甘肃农业大学学报,2009,44(6):49-51.
[18] 王晶,徐志英,盛云燕.低温对绿萝幼苗叶片氮素及叶绿素含量的影响[J].现代农业科技,2011(15):208-209.
[19] 高丽慧,易津,李菲,等.三种禾本科牧草低温胁迫的生理响应[J].中国草地学报,2011,33(3):107-111.
[20] 王宁,吴军,夏鹏云,等.低温胁迫对大叶冬青生理特性的影响[J].河南农业大学学报,2011,45(4):407-410.
[21] Zhou C Y, Yang C D, Zhan L. Effects of low temperature stress on physiological and biochemical characteristics of podocarpus nagi [J]. Agricultural science & technology,2012,13(3):533-536.
[22] Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature[J]. Planta,2002,215(4):541-548.
[23] Nutthachai P, Yoshihiko S, Sumiko S, et al. A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel[J].Scientia Horticulturae,2011,130(1):73-77.
[24] 简令成. 生物膜与植物寒害和抗寒性的关系[J].植物学通报,1983(1):17-23.
[25] Lyons J M. Chilling injury in plants[J]. Annual Review of Plant Physiology,1973(24):445-466.
[26] Murata N, Yamaya J. Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants[J]. Plant Physiology,1984,74(4):1016-1024.
[27] 宋洪伟,董英山.用膜脂脂肪酸法鉴定小浆果资源的抗寒性[J].落叶果树,2000(3):6-8.
[28] 张玮,黄树燕,吴继林,等.低温胁迫对麻竹叶片和根系抗性生理指标的影响[J].生态学杂志,2012,31(3):513-519.
[29] 李志辉,杨波,黄丽群,等.桉树抗寒性研究--膜脂脂肪酸定量分析[J].中南林学院学报,2006,26(3):28-31.
[30] Li B, Zhang C, Cao B, et al. Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids[J]. Amino Acids,2012,43(6):2469-2480.
[31] 苏维埃,王洪春.膜脂不饱和度在水稻抗冷性中的作用[J].科学通报,1983,28(6):373-376.
[32] 胡远.FAD8基因遗传转化小油桐提高幼苗抗寒性研究[D].贵阳:贵州大学,2008.
[33] 范玉贞.自然低温胁迫对白三叶草的膜损伤与SOD活性的影响[J].湖北农业科学,2010,49(2):404-405,409.
[34] 高冬冬,谭艳玲,马关喜,等.蝴蝶兰叶片对低温胁迫的生理响应[J].浙江大学学报:农业与生命科学版,2011,37(5):509-515.
[35] 王飞,王华,李嘉瑞.低温对杏品种花及幼果的伤害和若干生理指标的影响[J].江苏农业学报,1999,15(4):237-240.
[36] 杨春祥.早熟油桃抗寒性的研究[D].泰安:山东农业大学,2005.
[37] 江福英,李延,翁伯琦.植物低温胁迫及其抗性生理[J].福建农业学报,2002,17(3):190-195.
[38] 高京草,王慧霞,李西选.可溶性蛋白、丙二醛含量与枣树枝条抗寒性的关系研究[J].北方园艺,2010(23):18-20.
[39] 艾琳.鲜食葡萄抗寒性研究[D].乌鲁木齐:新疆农业大学,2003.
[40] Breusegem F, Slooten L, Stassart J M et al. Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress[J]. Journal of experimental botany,1999,50(330):71-78.
[41] Prasad T K. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings[J]. Plant Physiology,1997,114(4):1369-1376.
[42] Michael J. Fryer, James R. Andrews, Kevin Oxborough, et al.Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature[J].Plant Physilogy,1998,116(2):571-580.
[43] Degand H, Faber AM, Dauchot N, et al. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation[J]. Proteomics,2009,9(10):2903-2907.
[44] Koehler G, Wilson R C, Goodpaster J V, et al. Proteomic study of low-temperature responses in strawberry cultivars (Fragaria× ananassa) that differ in cold tolerance[J]. Plant Physiology,2012,159(4):1787-1805.
[45] Wang J E, Liu K K, Li D W, et al. A novel peroxidase CanPOD gene of pepper is involved in defense responses to Phytophtora capsici infection as well as abiotic stress tolerance[J]. International Journal of Molecular Sciences,2013,14(2):3158-3177.
[46] Raimbault A K, Marie-Alphonsine P A, Horry J, et al. Polyphenol oxidase and peroxidase expression in four pineapple varieties (Ananas comosus L.) after a chilling injury[J]. Journal of Agricultural and Food Chemistry,2011,59(1):342-348.
[47] Haghjou M M, Shariati M, Smirnoff N. The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains[J]. Physiology Plant,2009,135(3):272-280.
[48] Duan M, Ma N N, Li D, et al. Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress[J]. Plant physiology and biochemistry,2012(58):37-45.
[49] Li X, Cheng X X, Liu J, et al. Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants[J]. Plant Biotechnology Reports,2011,5(1):61-69.
[50] Gu X, Gao Z, Zhuang W, et al. Comparative proteomic analysis of rd29A:RdreB1BI transgenic and non-transgenic strawberries exposed to low temperature[J]. Journal of Plant Physiology,2013,170(7):696-706.
[51] Zhou Y, Zhang D, Pan J, et al. Overexpression of a multiple stress- responsive gene, ZmMPK4, enhances tolerance to low temperature in transgenic tobacco[J]. Plant Physiology and Biochemistry,2012(58):174-181.
[52] 杨东,张红,陈丽萍,等.温度胁迫对10种菊科杂草丙二醛和可溶性糖的影响[J].四川师范大学学报,2007,30(3):391-394.
[53] 郝敬虹,李天来,孙丽萍,等.夜间低温对薄皮甜瓜糖运转途径上各器官糖含量的影响[J].西北植物学报,2009,29(1):0085-0092.
[54] Grimaud F, Renaut J, Dumont E, et al. Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.)[J]. Journal Proteomics,2013(80):145-159.
[55] Lee J H, Yu D J, Kim S J, et al. Intraspecies differences in cold hardiness, carbohydrate content and β-amylase gene expression of Vaccinium corymbosum during cold acclimation and deacclimation[J]. Tree Physiology,2012,32(12):1533-1540.
[56] Zhuo C, Wang T, Lu S, et al. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses[J]. Physiologia Plantarum,2013,149(1):67-78.
[57] Paul E V, Sandeep S. Proline metabolism and its implications for plant-environment interaction[J]. The Arabidopsis Book,2010,8:e0140.
[58] Hare P D, Cress W A, J Van Staden. Dissecting the roles of osmolyte accumulation during stress[J]. Plant, Cell & Environment,1998,21(6):535-553.
[59] 孙丽华.黄杨粗蛋白、氨基酸组分与脯氨酸等与其耐寒性的研究[J].干旱区资源与环境,2006,20(6):202-206.
[60] 张静,朱为民.番茄苗期低温下生理生化特性的研究[J].西南农业学报,2012,25(2):420-423.
[61] 李秋丽.4个狗牙根品种(系)的耐寒性评价[D].武汉:华中农业大学,2010.
[62] Gleeson D, Marie-Anne Lelu-Walter, Parkinson M. Overproduction of proline in transgenic hybrid larch (Larix x leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost[J]. Molecular Breeding,2005(15):21-29.
[63] Nanjo T, Kobayashi M, Yoshiba Y, et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana[J]. FEBS Letters,1999,461(3):205-210.
[64] Gilmour S J, Zarka D G, Stockinger EJ, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. The Plant Journal,1998,16(4):433-442.
[65] Yu J, Chen S, Wang T, et al. Comparative Proteomic Analysis of Puccinellia tenuiflora Leaves under Na2CO3 Stress[J]. International journal of molecular sciences,2013,14(1):1740-1762.
[66] Wang Y D, Wang X, Ngai S M, et al. Comparative proteomics analysis of selenium responses in selenium-enriched rice grains[J]. Journal of proteome research,2013,12(2):808-820.
[67] Min Seok Bae, Eun Ju Cho, Eun-Yong Choi, et al. Analysis of the Arabidopsis nuclear proteome and its response to cold stress[J]. The Plant Journal,2003,36(5):652-663.
[68] Amme S, Matros A, Schlesier B, et al. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology[J]. Journal of Experimental Botany,2006,57(7):1537-1546.
[69] Fanucchi F, Alpi E, Olivieri S, et al. Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level[J]. Biochimica et Biophysica Acta,2012,1824(6):813-825.
[70] Hashimoto M, Komatsu S. Proteomic analysis of rice seedlings during cold stress[J]. Proteomics,2007,7(8):1293-1302.
[71] Neilson K A, Mariani M, Haynes P A. Quantitative proteomic analysis of cold-responsive proteins in rice[J]. Proteomics,2011,11(9):1696-1706.
[72] Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings[J]. Proteomics,2005,5(12):3162-3172.
[73] Lee D G, Ahsan N, Lee S H, et al. Chilling stress-induced proteomic changes in rice roots[J]. Journal of Plant Physiology,2009,166(1):1-11.
[74] Folgado R, Panis B, Sergeant K, et al. Differential protein expression in response to abiotic stress in two potato species: Solanum commersonii Dun and Solanum tuberosum L[J]. International Journal of Molecular Sciences,2013,14(3):4912-4933.
[75] Dumont E, Bahrman N, Goulas E, et al. A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.)[J]. Plant Science,2011,180(1):86-98.
[76] Gao F, Zhou Y, Zhu W, et al. Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves[J]. Planta,2009,230(5):1033-1046.
[77] 李庚虎.木薯低温胁迫生理生化响应及蛋白质组学研究[D].海口:海南大学,2013.
[78] Yun Z, Jin S, Ding YD, et al. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage[J]. Journal of Experimental Botany,2012,63(8):2873-2893.
[79] Bocian A, Kosmala A, Rapacz M, et al. Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance[J]. Journal of Plant Physiology,2011,168(11):1271-1279.
|