[1] Shpak, E. D., Diverse roles of ERECTA family genes in plant development. J Integr Plant Biol, 2013. 55(12): p. 1238-50. [2] GP, Rédei, A heuristic glance at the past of Arabidopsis genetics. In: Koncz C, Chua N. H, Schell J, eds. Methods in Arabidopsis Research. World Scienti?c Press Inc, 1992. Singapore.: p. 1–15. [3] Torii, K. U., N. Mitsukawa, T. Oosumi, et al., The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 1996. 8(4): p. 735-46. [4] Karve, R., W. Liu, S. G. Willet, et al., The presence of multiple introns is essential for ERECTA expression in Arabidopsis. RNA, 2011. 17(10): p. 1907-21. [5] 胡鑫. and 徐全乐, ERECTA基因研究进展_胡鑫. 西北植物学报, 2010. 30(12): p. 2564-2569. [6] Shpak, E. D., C. T. Berthiaume, E. J. Hill, et al., Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development, 2004. 131(7): p. 1491-501. [7] Douglas, S. J. and C. D. Riggs, Pedicel development in Arabidopsis thaliana: contribution of vascular positioning and the role of the BREVIPEDICELLUS and ERECTA genes. Dev Biol, 2005. 284(2): p. 451-463. [8] Shpak, E. D., M. B. Lakeman, and K. U. Torii, Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell, 2003. 15(5): p. 1095-110. [9] Van Zanten, M., L. B. Snoek, M. C. Proveniers, et al., The many functions of ERECTA. Trends Plant Sci, 2009. 14(4): p. 214-8. [10] Douglas, Scott J., George Chuck, Ronald E. Dengler, et al., KNAT1 and ERECTA Regulate Inflorescence Architecture in Arabidopsis. The Plant Cell, 2002. 14(3): p. 547-558. [11] Yokoyama, Ryusuke, Taku Takahashi, Atsushi Kato, et al., The Arabidopsis ERECTA gene is expressed in the shoot apical meristem and organ primordia. The Plant Journal, 1998. [12] Woodward, C., S. M. Bemis, E. J. Hill, et al., Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol, 2005. 139(1): p. 192-203. [13] Mandel, T., F. Moreau, Y. Kutsher, et al., The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity. Development, 2014. 141(4): p. 830-41. [14] Uchida, N. and M. Tasaka, Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. J Exp Bot, 2013. 64(17): p. 5335-43. [15] Shpak, E. D., J. M. McAbee, L. J. Pillitteri, et al., Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science, 2005. 309(5732): p. 290-3. [16] Torii, K. U., Mix-and-match: ligand-receptor pairs in stomatal development and beyond. Trends Plant Sci, 2012. 17(12): p. 711-9. [17] Tameshige, T., S. Okamoto, J. S. Lee, et al., A Secreted Peptide and Its Receptors Shape the Auxin Response Pattern and Leaf Margin Morphogenesis. Curr Biol, 2016. 26(18): p. 2478-2485. [18] Villagarcia, H., A. C. Morin, E. D. Shpak, et al., Modification of tomato growth by expression of truncated ERECTA protein from Arabidopsis thaliana. J Exp Bot, 2012. 63(18): p. 6493-504. [19] Fischer, Urs and Thomas Teichmann, The ERECTA and ERECTA-like genes control a developmental shift during xylem formation in Arabidopsis. New Phytologist, 2017. 213: p. 1562-1563. [20] Pillitteri, L. J., S. M. Bemis, E. D. Shpak, et al., Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development. Development, 2007. 134(17): p. 3099-109. [21] Qin, Y., L. Zhao, M. I. Skaggs, et al., ACTIN-RELATED PROTEIN6 Regulates Female Meiosis by Modulating Meiotic Gene Expression in Arabidopsis. Plant Cell, 2014. 26(4): p. 1612-1628. [22] Cai, H., L. Zhao, L. Wang, et al., ERECTA signaling controls Arabidopsis inflorescence architecture through chromatin-mediated activation of PRE1 expression. New Phytol, 2017. 214(4): p. 1579-1596. [23] Hunt, L. and J. E. Gray, The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr Biol, 2009. 19(10): p. 864-869. [24] Braybrook, S. A. and C. Kuhlemeier, How a plant builds leaves. Plant Cell, 2010. 22(4): p. 1006-1018. [25] Hara, K., R. Kajita, K. U. Torii, et al., The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev, 2007. 21(14): p. 1720-1725. [26] Hara, K., T. Yokoo, R. Kajita, et al., Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol, 2009. 50(6): p. 1019-1031. [27] Chen, M. K., R. L. Wilson, K. Palme, et al., ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. Plant Physiol, 2013. 162(4): p. 1978-91. [28] Uchida, N., J. S. Lee, R. J. Horst, et al., Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem. Proc Natl Acad Sci U S A, 2012. 109(16): p. 6337-42. [29] Abrash, E. B., K. A. Davies, and D. C. Bergmann, Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions. Plant Cell, 2011. 23(8): p. 2864-79. [30] Meng, X., H. Wang, Y. He, et al., A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. Plant Cell, 2012. 24(12): p. 4948-4960. [31] Kim, T. W., M. Michniewicz, D. C. Bergmann, et al., Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 2012. 482(7385): p. 419-422. [32] Lee, J. S., T. Kuroha, M. Hnilova, et al., Direct interaction of ligand-receptor pairs specifying stomatal patterning. Genes Dev, 2012. 26(2): p. 126-136. [33] Tameshige, T., S. Okamoto, M. Tasaka, et al., Impact of erecta mutation on leaf serration differs between Arabidopsis accessions. Plant Signal Behav, 2016. 11(12): p. e1261231. [34] Kosentka, P. Z., L. Zhang, Y. A. Simon, et al., Identification of critical functional residues of receptor-like kinase ERECTA. J Exp Bot, 2017. 68(7): p. 1507-1518. [35] Patel, D., M. Basu, S. Hayes, et al., Temperature-dependent shade avoidance involves the receptor-like kinase ERECTA. Plant J, 2013. 73(6): p. 980-920. [36] Hord, C. L., Y. J. Sun, L. J. Pillitteri, et al., Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases. Mol Plant, 2008. 1(4): p. 645-658. [37] Kasulin, L., Y. Agrofoglio, and J. F. Botto, The receptor-like kinase ERECTA contributes to the shade-avoidance syndrome in a background-dependent manner. Ann Bot, 2013. 111(5): p. 811-9. [38] Abraham, M. C., C. Metheetrairut, and V. F. Irish, Natural variation identifies multiple loci controlling petal shape and size in Arabidopsis thaliana. PLoS One, 2013. 8(2): p. e56743. [39] van Zanten, M., L. Basten Snoek, E. van Eck-Stouten, et al., Ethylene-induced hyponastic growth in Arabidopsis thaliana is controlled by ERECTA. Plant J, 2010. 61(1): p. 83-95. [40] Schmalenbach., Inga, Lei Zhang., Malgorzata Ryngajllo., et al., Functional analysis of the Landsberg erecta allele of FRIGIDA. 2014. [41] Qi, Y., Y. Sun, L. Xu, et al., ERECTA is required for protection against heat-stress in the AS1/ AS2 pathway to regulate adaxial-abaxial leaf polarity in Arabidopsis. Planta, 2004. 219(2): p. 270-6. [42] van Zanten, M., L. B. Snoek, E. van Eck-Stouten, et al., ERECTA controls low light intensity-induced differential petiole growth independent of phytochrome B and cryptochrome 2 action in Arabidopsis thaliana. Plant Signal Behav, 2010. 5(3): p. 284-6. [43] Lin, G., L. Zhang, Z. Han, et al., A receptor-like protein acts as a specificity switch for the regulation of stomatal development. Genes Dev, 2017. 31(9): p. 927-938. [44] Takahashi, T., H. Shibuya, and A. Ishikawa, ERECTA contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis. Biosci Biotechnol Biochem, 2016. 80(7): p. 1390-2. [45] Llorente, F., C. Alonso-Blanco, C. Sanchez-Rodriguez, et al., ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J, 2005. 43(2): p. 165-80. [46] Godiard, L., L. Sauviac, K. U. Torii, et al., ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J, 2003. 36(3): p. 353-65. [47] Sánchez-Rodríguez, Clara, The ERECTA Receptor-Like Kinase Regulates Cell Wall–Mediated Resistance to Pathogens in Arabidopsis thaliana. e-Xtra, 2009. [48] Mandel, T., H. Candela, U. Landau, et al., Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development, 2016. 143(9): p. 1612-22. [49] Adie, B. A., J. Perez-Perez, M. M. Perez-Perez, et al., ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 2007. 19(5): p. 1665-81. [50] Terpstra, I. R., L. B. Snoek, J. J. Keurentjes, et al., Regulatory network identification by genetical genomics: signaling downstream of the Arabidopsis receptor-like kinase ERECTA. Plant Physiol, 2010. 154(3): p. 1067-78. [51] Wang, D., C. Yang, H. Wang, et al., BKI1 Regulates Plant Architecture through Coordinated Inhibition of the Brassinosteroid and ERECTA Signaling Pathways in Arabidopsis. Mol Plant, 2017. 10(2): p. 297-308.
|