Chinese Agricultural Science Bulletin ›› 2019, Vol. 35 ›› Issue (24): 100-108.doi: 10.11924/j.issn.1000-6850.casb18080078
Previous Articles Next Articles
Received:
2018-08-18
Revised:
2018-10-22
Accepted:
2018-10-24
Online:
2019-08-26
Published:
2019-08-26
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb18080078
[1] Ferrandon D, Imler J L, Hetru C, et al. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections [J]. Nature Reviews Immunology, 2007, 7(11): 862-74. [2] Haghparast, Alireza. Innate Immunity and Pattern Recognition Receptors (PRRs): Recent Developments and New Insights in Veterinary Immunology [J]. International Congress of Immunology & Allergy of Iran, 2014. [3] Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response [J]. Developmental and comparative immunology, 2014, 42(1): 25-35. [4] Aggarwal K, Silverman N. Positive and negative regulation of the Drosophila immune response [J]. Bmb Reports, 2008, 41(4): 267. [5] Meinander A, Runchel C, Tenev T, et al. Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling [J]. Embo Journal, 2012, 31(12): 2770. [6] Paquette N, Broemer M, Aggarwal K, et al. Caspase-mediated cleavage, IAP binding, and ubiquitination: linking three mechanisms crucial for Drosophila NF-kappaB signaling [J]. Mol Cell, 2010, 37(2): 172-82. [7] Kim T, Kim Y J. Overview of innate immunity in Drosophila [J]. Journal of biochemistry and molecular biology, 2005, 38(2): 121. [8] Svenja S, Silverman N, Junell A, et al. Caspase-mediated processing of the Drosophila NF-kappaB factor Relish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5991. [9] Chen L, Paquette N, Mamoor S, et al. Innate immune signaling in Drosophila is regulated by transforming growth factor β (TGFβ)-activated kinase (Tak1)-triggered ubiquitin editing [J]. Journal of Biological Chemistry, 2017, 292(21): 8738-49. [10] Valanne S, Kleino A, Myllym?ki H, et al. Iap2 is required for a sustained response in the Drosophila Imd pathway [J]. Developmental & Comparative Immunology, 2007, 31(10): 991-1001. [11] Lemaitre B, Reichhart J M, Hoffmann J A. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes?of?microorganisms [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(26): 14614-9. [12] Yoshida H, Kinoshita K, Ashida M. Purification of a Peptidoglycan Recognition Protein from Hemolymph of the Silkworm, Bombyx mori [J]. The Journal of biological chemistry, 1996, 271(23): 13854-60. [13] Boscodrayon V, Poidevin M, Boneca I G, et al. Peptidoglycan Sensing by the Receptor PGRP-LE in the Drosophila Gut Induces Immune Responses to Infectious Bacteria and Tolerance to Microbiota [J]. Cell Host & Microbe, 2012, 12(2): 153. [14] Lemaitre B, Hoffmann J. The host defense of Drosophila melanogaster [J]. Annual review of immunology, 2007, 25(697-743. [15] Tanaka H, Sagisaka A. Involvement of peptidoglycan recognition protein L6 in activation of immune deficiency pathway in the immune responsive silkworm cells [J]. Archives of Insect Biochemistry & Physiology, 2016, 92(2): 143-56. [16] Zhan M Y, Yang P J, Rao X J. Molecular cloning and analysis of PGRP-L1 and IMD from silkworm Bombyx mori [J]. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 2017, 215( [17] Werner T, Borgerenberg K, Mellroth P, et al. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan [J]. Journal of Biological Chemistry, 2003, 278(29): 26319. [18] Kaneko T, Goldman W E, Mellroth P, et al. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway [J]. Immunity, 2004, 20(5): 637. [19] Neyen C, Poidevin M, Roussel A, et al. Tissue- and ligand-specific sensing of gram-negative infection in drosophila by PGRP-LC isoforms and PGRP-LE [J]. Journal of Immunology, 2012, 189(4): 1886. [20] Iatsenko I, Kondo S, Menginlecreulx D, et al. PGRP-SD, an Extracellular Pattern-Recognition Receptor, Enhances Peptidoglycan-Mediated Activation of the Drosophila Imd Pathway [J]. Immunity, 2016, 45(5): 1013-23. [21] Takehana A, Katsuyama T, Yano T, et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13705. [22] Lim J H, Kim M S, Kim H E, et al. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins [J]. The Journal of biological chemistry, 2006, 281(12): 8286-95. [23] Kaneko T, Yano T, Aggarwal K, et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan [J]. Nature Immunology, 2006, 7(715. [24] Yano T, Mita S, Ohmori H, et al. Autophagic control of Listeria through intracellular innate immune recognition in drosophila [J]. Nature immunology, 2008, 9(8): 908. [25] Schmidt R L, Trejo T R, Plummer T B, et al. Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila [J]. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2008, 22(3): 918. [26] Kurata S. Peptidoglycan recognition proteins in Drosophila immunity [J]. Developmental & Comparative Immunology, 2014, 42(1): 36. [27] Koyama H, Kato D, Minakuchi C, et al. Peptidoglycan recognition protein genes and their roles in the innate immune pathways of the red flour beetle, Tribolium castaneum [J]. Journal of Invertebrate Pathology, 2015, 132(86-100. [28] Gendrin M, Zaidmanrémy A, Broderick N A, et al. Functional Analysis of PGRP-LA in Drosophila Immunity [J]. PloS one, 2013, 8(7): e69742-e. [29] Georgel P, Naitza S, Kappler C, et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis [J]. Developmental Cell, 2001, 1(4): 503. [30] Leulier F, Vidal S, Saigo K, et al. Inducible Expression of Double-Stranded RNA Reveals a Role for dFADD in the Regulation of the Antibacterial Response in Adults [J]. Current biology : CB, 2002, 12(12): 996. [31] Hu S, Yang X. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD [J]. Journal of Biological Chemistry, 2000, 275(40): 30761. [32] Ertürkhasdemir D, Broemer M, Leulier F, et al. Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes [J]. Proc Natl Acad Sci U S A, 2009, 106(24): 9779-84. [33] Park E S, Kim Y J, Yoo Y J. Ubiquitin-conjugating enzyme UbcD4 as an essential component of Drosophila immune deficiency pathway (LB192) [J]. Faseb Journal, 2014, 28( [34] Park E S, Elangovan M, Kim Y J, et al. UbcD4, an ortholog of E2-25K/Ube2K, is essential for activation of the immune deficiency pathway in Drosophila [J]. Biochem Biophys Res Commun, 2016, 469(4): 891-6. [35] Zhuang Z H, Sun L, Kong L, et al. Drosophila TAB2 is required for the immune activation of JNK and NF-kappaB [J]. Cellular Signalling, 2006, 18(7): 964. [36] Silverman N, Zhou R, Erlich R L, et al. Immune activation of NF-kappaB and JNK requires Drosophila TAK1 [J]. Journal of Biological Chemistry, 2003, 278(49): 48928-34. [37] Aggarwal B B. Signalling pathways of the TNF superfamily: a double-edged sword [J]. Nature Reviews Immunology, 2003, 3(9): 745-56. [38] Leulier F, Lhocine N, Lemaitre B, et al. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection [J]. Molecular & Cellular Biology, 2006, 26(21): 7821-31. [39] Guntermann S, Fraser B, Hazes B, et al. Independent Proteolytic Activities Control the Stability and Size of Drosophila Inhibitor of Apoptosis 2 Protein [J]. Journal of Innate Immunity, 2015, 7(5): [40] Rutschmann S, Jung A C, Zhou R, et al. Role of Drosophila IKK|[gamma]| in a Toll-independent antibacterialimmune response [J]. Nature Immunology, 2000, 1(4): 342. [41] Silverman N, Rui Z, St?ven S, et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity [J]. Genes & development, 2000, 14(19): 2461. [42] Tusco R, Jacomin A C, Jain A, et al. Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses [J]. Nature Communications, 2017, 8(1): 1264. [43] Wiklund M L, Steinert S, Junell A, et al. The N-terminal half of the Drosophila Rel/NF-kappaB factor Relish, REL-68, constitutively activates transcription of specific Relish target genes [J]. Developmental & Comparative Immunology, 2009, 33(5): 690-6. [44] Leulier F, Rodriguez A, Khush R S, et al. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection [J]. EMBO reports, 2000, 1(4): 353–8. [45] Goto A, Matsushita K, Gesellchen V, et al. Akirins are highly conserved nuclear proteins required for NF-kappaB-dependent gene expression in drosophila and mice [J]. Nature Immunology, 2008, 9(1): 97-104. [46] Nowak S J, Aihara H, Gonzalez K, et al. Akirin links twist-regulated transcription with the Brahma chromatin remodeling complex during embryogenesis [J]. Plos Genetics, 2012, 8(3): e1002547. [47] Moreno-Cid J A, Jm P D L L, Villar M, et al. Control of multiple arthropod vector infestations with subolesin/akirin vaccines [J]. Vaccine, 2013, 31(8): 1187. [48] Kounatidis I, Chtarbanova S, Cao Y, et al. NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration [J]. Cell Reports, 2017, 19(4): 836-48. [49] Neyen C, Runchel C, Schüpfer F, et al. The regulatory isoform rPGRP-LC induces immune resolution via endosomal degradation of receptors [J]. Nature Immunology, 2016, 17(10): 1150-8. [50] Royet J, Dziarski R. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences [J]. Nature Reviews Microbiology, 2007, 5(4): 264-77. [51] Gregorio E D, Spellman P T, Tzou P, et al. The Toll and Imd pathways are the major regulators of the immune response in Drosophila [J]. Embo Journal, 2002, 21(11): 2568-79. [52] Paredes J, Welchman D, Poidevin M, et al. Negative Regulation by Amidase PGRPs Shapes the Drosophila Antibacterial Response and Protects the Fly from Innocuous Infection [J]. Immunity, 2011, 35(5): 770-9. [53] Zaidmanrémy A, Hervé M, Poidevin M, et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection [J]. Immunity, 2006, 24(4): 463-73. [54] Wang S, Beerntsen B T. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti [J]. Insect Molecular Biology, 2015, 24(3): 293-310. [55] Costechareyre D, Capo F, Fabre A, et al. Tissue-Specific Regulation of Drosophila NF-x03BA;B Pathway Activation by Peptidoglycan Recognition Protein SC [J]. Journal of Innate Immunity, 2016, 8(1): 67. [56] Maillet F, Bischoff V, Vignal C, et al. The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation [J]. Cell Host & Microbe, 2008, 3(5): 293-303. [57] Persson C, Oldenvi S, Steiner H. Peptidoglycan recognition protein LF: a negative regulator of Drosophila immunity [J]. Insect Biochemistry & Molecular Biology, 2007, 37(12): 1309-16. [58] Basbous N, Coste F, Leone P, et al. The Drosophila peptidoglycan‐recognition protein LF interacts with peptidoglycan‐recognition protein LC to downregulate the Imd pathway [J]. Embo Reports, 2011, 12(4): 327–33. [59] Tavignot R, Chaduli D, Djitte F, et al. Inhibition of a NF-κB/Diap1 Pathway by PGRP-LF Is Required for Proper Apoptosis duringDrosophilaDevelopment [J]. Plos Genetics, 2017, 13(1): e1006569. [60] Skaug B, Jiang X, Chen Z J. The Role of Ubiquitin in NF-κB Regulatory Pathways [J]. Annual Review of Biochemistry, 2009, 78(1): 769-96. [61] Thevenon D, Engel E, Avetrochex A, et al. The Drosophila ubiquitin-specific protease dUSP36/Scny targets IMD to prevent constitutive immune signaling [J]. Cell Host & Microbe, 2009, 6(4): 309-20. [62] Kovalenko A, Chablebessia C, Cantarella G, et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination [J]. Nature, 2003, 424(6950): 801. [63] Xue L, Igaki T, Kuranaga E, et al. Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila [J]. Developmental Cell, 2007, 13(3): 446. [64] Lee B C, Miyata M, Lim J H, et al. Deubiquitinase CYLD acts as a negative regulator for bacterium NTHi-induced inflammation by suppressing K63-linked ubiquitination of MyD88 [J]. Proc Natl Acad Sci U S A, 2016, 113(2): E165. [65] Kugler J M, Woo J S, Oh B H, et al. Regulation of Drosophila vasa in vivo through paralogous cullin-RING E3 ligase specificity receptors [J]. Molecular & Cellular Biology, 2010, 30(7): 1769-82. [66] My P, Hd J, Sy L, et al. Fas-associated factor-1 inhibits nuclear factor-kappaB (NF-kappaB) activity by interfering with nuclear translocation of the RelA (p65) subunit of NF-kappaB [J]. The Journal of biological chemistry, 2004, 279(4): 2544-9. [67] Yagi Y, Lim Y M, Tsuda L, et al. fat facets induces polyubiquitination of Imd and inhibits the innate immune response in Drosophila [J]. Genes to Cells, 2013, 18(11): 934. [68] Ma X, Li X, Dong S, et al. A Fas associated factor negatively regulates anti-bacterial immunity by promoting Relish degradation in Bombyx mori [J]. Insect Biochemistry & Molecular Biology, 2015, 63(144-51. [69] He Z, Wang P, Shi H, et al. Fas-associated factor 1 plays a negative regulatory role in the antibacterial immunity of Locusta migratoria [J]. Insect Molecular Biology, 2013, 22(4): 389-98. [70] Kim M, Lee J H, Lee S Y, et al. Caspar, a suppressor of antibacterial immunity in Drosophila [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(44): 16358. [71] Khush R S, Cornwell W D, Uram J N, et al. A Ubiquitin-Proteasome Pathway Represses the Drosophila Immune Deficiency Signaling Cascade [J]. Current Biology Cb, 2002, 12(20): 1728-37. [72] Aparicio R, Neyen C, Lemaitre B, et al. dRYBP Contributes to the Negative Regulation of the Drosophila Imd Pathway [J]. Plos One, 2013, 8(4): e62052. [73] Tsuda M, Langmann C, Harden N, et al. The RING-finger scaffold protein Plenty of SH3s targets TAK1 to control immunity signalling in Drosophila [J]. Embo Reports, 2005, 6(11): 1082–7. [74] Fernando M D, Kounatidis I, Ligoxygakis P. Loss of Trabid, a New Negative Regulator of the Drosophila Immune-Deficiency Pathway at the Level of TAK1, Reduces Life Span [J]. PLoS Genetics,10,2(2014-2-20), 2014, 10(2): e1004117. [75] Decoville M, Giraud-Panis M J, Mosrin-Huaman C, et al. HMG boxes of DSP1 protein interact with the rel homology domain of transcription factors [J]. Nucleic Acids Research, 2000, 28(2): 454-62. [76] Kim L K, Choi U Y, Cho H S, et al. Down-regulation of NF-kappaB target genes by the AP-1 and STAT complex during the innate immune response in Drosophila [J]. Plos Biology, 2007, 5(9): e238. [77] Myllym?ki H, R?met M. Transcription factor zfh1 downregulates Drosophila Imd pathway [J]. Developmental & Comparative Immunology, 2013, 39(3): 188. [78] Morris O, Liu X, Domingues C, et al. Signal Integration by the IkB Protein Pickle Shapes Drosophila Innate Host Defense [J]. Cell Host & Microbe, 2016, 20(3): 283-95. [79] Foley E, O''farrell P H. Functional Dissection of an Innate Immune Response by a Genome-Wide RNAi Screen [J]. Plos Biology, 2004, 2(8): E203. [80] Guntermann S, Primrose D A, Foley E. Dnr1-dependent regulation of the Drosophila immune deficiency signaling pathway [J]. Developmental & Comparative Immunology, 2009, 33(1): 127-34. [81] Primrose D A, Chaudhry S, Johnson A G, et al. Interactions of DNR1 with the apoptotic machinery of Drosophila melanogaster [J]. Journal of Cell Science, 2007, 120(Pt 7): 1189. [82] Cao Y, Chtarbanova S, Petersen A J, et al. Dnr1 mutations cause neurodegeneration in Drosophila by activating the innate immune response in the brain [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 1752-60. [83] De G E, Spellman P T, Rubin G M, et al. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22): 12590. [84] Kleino A, Valanne S, Ulvila J, et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway [J]. Embo Journal, 2005, 24(19): 3423-34. [85] Kleino A, Myllym?ki H, Kallio J, et al. Pirk is a negative regulator of the Drosophila Imd pathway [J]. Journal of Immunology, 2008, 180(8): 5413. [86] Aggarwal K, Rus F, Vriesema-Magnuson C, et al. Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway [J]. Plos Pathogens, 2008, 4(8): e1000120. [87] Lhocine N, Ribeiro P S, Buchon N, et al. PIMS Modulates Immune Tolerance by Negatively Regulating Drosophila Innate Immune Signaling [J]. Cell Host & Microbe, 2008, 4(2): 147-58. [88] Ragab A, Buechling T, Gesellchen V, et al. Drosophila Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells [J]. Embo Journal, 2011, 30(6): 1123-36. [89] Hori A, Kurata S, Kuraishi T. Unexpected role of the IMD pathway in Drosophila gut defense against Staphylococcus aureus [J]. Biochem Biophys Res Commun, 2017, 495(1): [90] Barletta A B, Nascimentosilva M C, Talyuli O A, et al. Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti [J]. Parasites & Vectors, 2017, 10(1): 103. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||