
Chinese Agricultural Science Bulletin ›› 2020, Vol. 36 ›› Issue (30): 106-111.doi: 10.11924/j.issn.1000-6850.casb20191100789
Previous Articles Next Articles
					
													Liu Zhixin1,2( ), Yao Na2, Liu Lingzhi2(
), Yao Na2, Liu Lingzhi2( )
)
												  
						
						
						
					
				
Received:2019-11-03
															
							
																	Revised:2019-11-26
															
							
															
							
																	Online:2020-10-25
															
							
																	Published:2020-10-16
															
						Contact:
								Liu Lingzhi   
																	E-mail:64066604@qq.com;liulingzhi2006@syau.edu.cn
																					CLC Number:
Liu Zhixin, Yao Na, Liu Lingzhi. Nitrogen Metabolic Characteristics of Two Cultivable Bacteria[J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 106-111.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb20191100789
| 引物名称与序列(5’-3’) | 参考文献 | 
|---|---|
| amoA-1F: 5’-GGGGTTTCTACTGGTGGT-3’ amoA-2R: 5’-CCCCTCKGSAAAGCCTTCTTC-3’ | [ | 
| nosZ-1870F: 5’-GCRACGGCAASAAGGTSMSSGT-3’ nosZ-2090R: 5’-CAKRTGCAKSGCRTGGCAGAA-3’ | [ | 
| norB-1F: 5’- CGNGARTTYCTSGARCARCC-3’ norB-8R: 5’-CRTADGCVCCRWAGAAVGC-3’ | [ | 
| nirK-1F: 5’-GGMATGGTKCCSTGGCA-3’ nirK-3R: ’-GAACTTGCCGGTVGYCCAGAC-3’ | [ | 
| nap-1F: 5’-TCTGGACCATGGGCTTCAACCA-3’ nap-1R: 5’-ACGACGACCGGCCAGCGCA-3’ | [ | 
| hao-1F: 5’-TGCGTGGARTGYCAC-3’ hao-3R: 5’-AGRTARGAKYSGGCAAA-3’ | [ | 
| 引物名称与序列(5’-3’) | 参考文献 | 
|---|---|
| amoA-1F: 5’-GGGGTTTCTACTGGTGGT-3’ amoA-2R: 5’-CCCCTCKGSAAAGCCTTCTTC-3’ | [ | 
| nosZ-1870F: 5’-GCRACGGCAASAAGGTSMSSGT-3’ nosZ-2090R: 5’-CAKRTGCAKSGCRTGGCAGAA-3’ | [ | 
| norB-1F: 5’- CGNGARTTYCTSGARCARCC-3’ norB-8R: 5’-CRTADGCVCCRWAGAAVGC-3’ | [ | 
| nirK-1F: 5’-GGMATGGTKCCSTGGCA-3’ nirK-3R: ’-GAACTTGCCGGTVGYCCAGAC-3’ | [ | 
| nap-1F: 5’-TCTGGACCATGGGCTTCAACCA-3’ nap-1R: 5’-ACGACGACCGGCCAGCGCA-3’ | [ | 
| hao-1F: 5’-TGCGTGGARTGYCAC-3’ hao-3R: 5’-AGRTARGAKYSGGCAAA-3’ | [ | 
| [1] | 单文俊, 王庆贵, 闫国永, 等. 基于土壤微生物的碳氮互作效应综述[J]. 中国农学通报, 2016,32(23):65-71. | 
| [2] | 贺纪正, 王军涛. 土壤微生物群落构建理论与时空演变特征[J]. 生态学报, 2015,35(20):6575-6583. doi: 10.5846/stxb201506061143 URL | 
| [3] | 贺瑞含, 杜宗军, 俞勇, 等. 北极苔原土壤中可培养细菌的分离及其抗菌活性测定[J]. 微生物学报, 2019,59(06):1050-1062. | 
| [4] | 刘君, 王宁, 崔岱宗, 等. 大小兴安岭可培养细菌的资源多样性[J]. 生物多样性, 2019,27(08):903-910. | 
| [5] | 王凤, 王宁练, 徐柏青, 等. 青藏高原唐古拉哈日钦冰芯表层和深层可培养细菌特征[J/OL]. 冰川冻土, http://kns.cnki.net/kcms/detail/62.1072.P.20190828.1823.002.html, 2019:1-10. | 
| [6] | 杨恒山, 萨如拉, 高聚林, 等. 秸秆还田对连作玉米田土壤微生物学特性的影响[J]. 玉米科学, 2017,25(05):98-104. | 
| [7] | 刘建国, 刘卫国. 微生物介导的氮循环过程研究进展[J]. 草地学报, 2018,26(02):277-283. | 
| [8] | Robertson G P, Groffman P M. Nitrogen transformations soil microbiology[J]. Ecology and Biochemistry, 2015,4(5):421-446. | 
| [9] | Junier P, Molina V, Dorador C, et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment[J]. Applied Microbiology and Biotechnology, 2010,85(3):425-440. doi: 10.1007/s00253-009-2228-9 URL pmid: 19830422 | 
| [10] | Daims H, Lücker S, Wagner M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016,24(9):699-712. doi: 10.1016/j.tim.2016.05.004 URL pmid: 27283264 | 
| [11] | Bartossek R, Nicol G W, Lanzen A, et al. Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context[J]. Environmental Microbiology, 2010,12:1075-1088. doi: 10.1111/j.1462-2920.2010.02153.x URL pmid: 20132279 | 
| [12] | 康鹏亮, 陈胜男, 黄廷林, 等. 好/厌氧条件下反硝化细菌脱氮特性与功能基因[J]. 环境科学, 2018(08):1-12. | 
| [13] | Marcel M M K, Hannah K M, Boran K. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology. 2018,16(5):263-276. doi: 10.1038/nrmicro.2018.9 URL pmid: 29398704 | 
| [14] | Cui X, Zhang, Gao J, et al. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China[J]. Sci Rep., 2018 8(1):16554. doi: 10.1038/s41598-018-34685-0. doi: 10.1038/s41598-018-34685-0 URL pmid: 30410029 | 
| [15] | Song Z L, Wang J, Liu G B, et al. Changes in nitrogen functional genes in soil profiles of grassland under long-term grazing prohibition in a semiarid area[J], Science of the Total Environment, 2019,673:92-101. URL pmid: 30986685 | 
| [16] | Chen D, Li Y, Wang C, et al. Dynamics and underlying mechanisms of N2O and NO emissions in response to a transient land-use conversion of Masson pine forest to tea field[J]. Science of the Total Environment, 2019,693:133549. doi.org/ 10.1016/j.scitotenv.,2019.07.355. doi: 10.1016/j.scitotenv.2019.07.355 URL pmid: 31374503 | 
| [17] | Andre A. Pulschen, Amanda G, et al. Isolation of Uncultured Bacteria from Antarctica Using Long Incubation Periods and Low Nutritional Media[J]. Frontiers in Microbiology, 2017,8:1346. doi: 10.3389/fmicb.2017.01346. doi: 10.3389/fmicb.2017.01346 URL pmid: 28769908 | 
| [18] | Verhagen F J, Laanbroek H J. Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats[J]. Applied and Environmental Microbiology, 1991,57(11):3255-3263. doi: 10.1128/AEM.57.11.3255-3263.1991 URL pmid: 16348588 | 
| [19] | 曾希柏, 王亚男, 王玉忠, 等. 施肥对设施菜地nirK型反硝化细菌群落结构和丰度的影响[J]. 应用生态学报, 2014,25(2):505-514. | 
| [20] | Huang X, Bai J, Li K R, et al. Characteristics of two novel cold- and salt-tolerant ammonia-oxidizing bacteria from Liaohe Estuarine Wetland[J]. Mar Pollut Bull, 2017,114(1):192-200. URL pmid: 27622929 | 
| [21] | 沈萍, 陈向东. 微生物学[M]. 北京: 高等教育出版社, 2006: 136-138. | 
| [22] | 姚娜. 异养氨氧化细菌氮素转化活性与相关功能基因的检测[D]. 沈阳:沈阳农业大学, 2018. | 
| [23] | Santoro A E, Casciotti K L, Francis C A. Activity, abundance and diversity of nitrifying archaea and bacteria in the centeral California current[J]. Environ Microbiol, 2010,12:1989-2006. doi: 10.1111/j.1462-2920.2010.02205.x URL pmid: 20345944 | 
| [24] | Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiol. Mol. Biol.Rev., 1997,61:533-616. | 
| [25] | Casciotti K L, Ward B B. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria[J]. FEMS Microbiol Ecol, 2005,52(2):197-205. doi: 10.1016/j.femsec.2004.11.002 URL pmid: 16329906 | 
| [26] | Braker G, Fesefeldt A, Witzel K P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples[J]. Applied and Environmental Microbiology, 1998,64(10):3769-3775. doi: 10.1128/AEM.64.10.3769-3775.1998 URL pmid: 9758798 | 
| [27] | 孔庆鑫, 李君文, 王新为, 等. 一种新的好氧反硝化菌筛选方法的建立及新菌株的发现[J]. 应用与环境生物学报, 2005,2:222-225. | 
| [28] | Markus C, Schmid, Alan B, et al. Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria[J]. Environmental microbiology, 2008,10(11):3140-3149. doi: 10.1111/j.1462-2920.2008.01732.x URL pmid: 18973625 | 
| [29] | 赵天涛, 项锦欣, 张丽杰, 等. 矿化垃圾中氧化甲烷兼性营养菌的筛选与生物特性研究[J]. 环境科学, 2012,33(5):1670-1675. | 
| [30] | Tate R. Nitrification in histosols: a potential role for the heterotrophic nitrifier[J]. Applied and Environmental Microbiology, 1977,33(4):911-994. doi: 10.1128/AEM.33.4.911-914.1977 URL pmid: 869537 | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||