Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (25): 1-10.doi: 10.11924/j.issn.1000-6850.casb2020-0680
Special Issue: 水稻
Yang Guohang1,2(), Li Qiong1,2(
), He Lizhao1,2, Gu Jing1,2(
), Niu Jing1,2, Zhang Haiou1,2, Zheng Zijian1,2, Zhao Zhen1,2
Received:
2020-11-20
Revised:
2021-04-21
Online:
2021-09-05
Published:
2021-09-23
Contact:
Li Qiong,Gu Jing
E-mail:yangguohang888@163.com;liq1130@163.com;89373536@qq.com
CLC Number:
Yang Guohang, Li Qiong, He Lizhao, Gu Jing, Niu Jing, Zhang Haiou, Zheng Zijian, Zhao Zhen. Study on the Migration, Transformation and Prediction Model of Cadmium in the Whole Growth Stage of Late Rice[J]. Chinese Agricultural Science Bulletin, 2021, 37(25): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2020-0680
参数 | 生育期 | 变化范围 | 平均值±标准误差 | 变异系数/% | P | F |
---|---|---|---|---|---|---|
pH | 苗期 | 4.94~6.11 | 5.44±0.06a | 1.07 | <0.001 | 9.95 |
分蘖期 | 4.10~6.35 | 5.20±0.10a | 1.91 | |||
灌浆期 | 5.30~8.16 | 5.87±0.12b | 2.06 | |||
成熟期 | 4.90~6.28 | 5.36±0.07a | 1.29 | |||
土壤有机质/(g/kg) | 苗期 | 30.11~50.66 | 41.18±1.22a | 2.96 | <0.001 | 17.95 |
分蘖期 | 18.23~60.62 | 42.16±1.82a | 4.32 | |||
灌浆期 | 19.59~56.32 | 40.56±1.69a | 4.17 | |||
成熟期 | 35.58~91.58 | 57.50±2.66b | 4.63 | |||
土壤全镉/(g/kg) | 苗期 | 0.16~0.52 | 0.33±0.02a | 6.06 | 0.012 | 3.85 |
分蘖期 | 0.23~0.89 | 0.48±0.04b | 8.33 | |||
灌浆期 | 0.20~1.07 | 0.44±0.04b | 9.09 | |||
成熟期 | 0.25~0.95 | 0.43±0.03b | 6.98 | |||
土壤有效态镉/(mg/kg) | 苗期 | 0.05~0.22 | 0.12±0.01a | 8.33 | 0.015 | 3.65 |
分蘖期 | 0.07~0.66 | 0.20±0.03b | 15.00 | |||
灌浆期 | 0.05~0.19 | 0.11±0.01a | 9.09 | |||
成熟期 | 0.05~0.78 | 0.17±0.03ab | 17.65 |
参数 | 生育期 | 变化范围 | 平均值±标准误差 | 变异系数/% | P | F |
---|---|---|---|---|---|---|
pH | 苗期 | 4.94~6.11 | 5.44±0.06a | 1.07 | <0.001 | 9.95 |
分蘖期 | 4.10~6.35 | 5.20±0.10a | 1.91 | |||
灌浆期 | 5.30~8.16 | 5.87±0.12b | 2.06 | |||
成熟期 | 4.90~6.28 | 5.36±0.07a | 1.29 | |||
土壤有机质/(g/kg) | 苗期 | 30.11~50.66 | 41.18±1.22a | 2.96 | <0.001 | 17.95 |
分蘖期 | 18.23~60.62 | 42.16±1.82a | 4.32 | |||
灌浆期 | 19.59~56.32 | 40.56±1.69a | 4.17 | |||
成熟期 | 35.58~91.58 | 57.50±2.66b | 4.63 | |||
土壤全镉/(g/kg) | 苗期 | 0.16~0.52 | 0.33±0.02a | 6.06 | 0.012 | 3.85 |
分蘖期 | 0.23~0.89 | 0.48±0.04b | 8.33 | |||
灌浆期 | 0.20~1.07 | 0.44±0.04b | 9.09 | |||
成熟期 | 0.25~0.95 | 0.43±0.03b | 6.98 | |||
土壤有效态镉/(mg/kg) | 苗期 | 0.05~0.22 | 0.12±0.01a | 8.33 | 0.015 | 3.65 |
分蘖期 | 0.07~0.66 | 0.20±0.03b | 15.00 | |||
灌浆期 | 0.05~0.19 | 0.11±0.01a | 9.09 | |||
成熟期 | 0.05~0.78 | 0.17±0.03ab | 17.65 |
参数 | 生育期 | 变化范围 | 平均值±标准误差 | 变异系数/% | P | F |
---|---|---|---|---|---|---|
根Cd/(mg/kg) | 苗期 | 0.04~1.50 | 0.97±0.06a | 6.19 | <0.001 | 27.73 |
分蘖期 | 0.46~5.01 | 1.69±0.26b | 15.38 | |||
灌浆期 | 0.19~4.38 | 2.46±0.21c | 8.54 | |||
成熟期 | 1.22~5.88 | 3.77±0.30d | 7.96 | |||
茎叶Cd/(mg/kg) | 苗期 | 0.21~1.41 | 0.56±0.06a | 10.71 | 0.002 | 5.42 |
分蘖期 | 0.27~3.17 | 0.99±0.15bc | 15.15 | |||
灌浆期 | 0.20~2.03 | 0.80±0.09ab | 11.25 | |||
成熟期 | 0.37~2.68 | 1.16±0.12c | 10.34 | |||
籽粒Cd/(mg/kg) | 成熟期 | 0.11~0.75 | 0.31±0.03 | 9.68 | — | — |
参数 | 生育期 | 变化范围 | 平均值±标准误差 | 变异系数/% | P | F |
---|---|---|---|---|---|---|
根Cd/(mg/kg) | 苗期 | 0.04~1.50 | 0.97±0.06a | 6.19 | <0.001 | 27.73 |
分蘖期 | 0.46~5.01 | 1.69±0.26b | 15.38 | |||
灌浆期 | 0.19~4.38 | 2.46±0.21c | 8.54 | |||
成熟期 | 1.22~5.88 | 3.77±0.30d | 7.96 | |||
茎叶Cd/(mg/kg) | 苗期 | 0.21~1.41 | 0.56±0.06a | 10.71 | 0.002 | 5.42 |
分蘖期 | 0.27~3.17 | 0.99±0.15bc | 15.15 | |||
灌浆期 | 0.20~2.03 | 0.80±0.09ab | 11.25 | |||
成熟期 | 0.37~2.68 | 1.16±0.12c | 10.34 | |||
籽粒Cd/(mg/kg) | 成熟期 | 0.11~0.75 | 0.31±0.03 | 9.68 | — | — |
生育期 | 部位 | pH | 土壤有机质 | 土壤全镉 | 土壤有效态镉 | 根 |
---|---|---|---|---|---|---|
苗期 | 土壤有效态镉 | -0.713** | — | 0.472* | — | — |
分蘖期 | 根 | -0.445* | — | 0.525** | 0.720** | |
茎叶 | -0.439* | — | 0.547** | 0.832** | 0.882** | |
土壤有效态镉 | — | — | 0.714** | — | — | |
灌浆期 | 茎叶 | — | 0.434* | 0.431* | — | 0.659** |
土壤有效态镉 | -0.496* | — | — | — | — | |
成熟期 | 茎叶 | — | — | 0.493* | 0.602** | — |
籽粒 | — | — | 0.600** | 0.774** | 0.440* | |
土壤有效态镉 | — | — | 0.795** | — | — |
生育期 | 部位 | pH | 土壤有机质 | 土壤全镉 | 土壤有效态镉 | 根 |
---|---|---|---|---|---|---|
苗期 | 土壤有效态镉 | -0.713** | — | 0.472* | — | — |
分蘖期 | 根 | -0.445* | — | 0.525** | 0.720** | |
茎叶 | -0.439* | — | 0.547** | 0.832** | 0.882** | |
土壤有效态镉 | — | — | 0.714** | — | — | |
灌浆期 | 茎叶 | — | 0.434* | 0.431* | — | 0.659** |
土壤有效态镉 | -0.496* | — | — | — | — | |
成熟期 | 茎叶 | — | — | 0.493* | 0.602** | — |
籽粒 | — | — | 0.600** | 0.774** | 0.440* | |
土壤有效态镉 | — | — | 0.795** | — | — |
生育期 | 参数 | pH | 土壤全镉 | 土壤有效态镉 | 茎叶 | 籽粒 |
---|---|---|---|---|---|---|
苗期 | 根 | — | -0.532** | — | — | — |
茎叶 | — | -0.527** | — | — | — | |
分蘖期 | 根 | — | — | — | 0.820** | — |
茎叶 | -0.434* | — | 0.470* | — | — | |
灌浆期 | 根 | — | -0.484* | — | 0.731** | — |
成熟期 | 根 | — | — | — | — | 0.531** |
茎叶 | — | — | — | — | 0.608** |
生育期 | 参数 | pH | 土壤全镉 | 土壤有效态镉 | 茎叶 | 籽粒 |
---|---|---|---|---|---|---|
苗期 | 根 | — | -0.532** | — | — | — |
茎叶 | — | -0.527** | — | — | — | |
分蘖期 | 根 | — | — | — | 0.820** | — |
茎叶 | -0.434* | — | 0.470* | — | — | |
灌浆期 | 根 | — | -0.484* | — | 0.731** | — |
成熟期 | 根 | — | — | — | — | 0.531** |
茎叶 | — | — | — | — | 0.608** |
部位 | 因子数 | 因子 | 回归预测模型(n=24) | r2 | P | |
---|---|---|---|---|---|---|
茎叶 | 单因子 | pH | lgCd茎叶=1.750-0.358pH | 0.317 | 0.004 | — |
lgACd | lgCd茎叶=0.572+0.897lgACd | 0.449 | <0.001 | — | ||
双因子 | pH,lgACd | lgCd茎叶=2.124-0.310pH+0.817lgACd | 0.684 | 0.001 | <0.001 | |
pHlgACd | lgCd茎叶=0.621+0.184pHlgACd | 0.602 | <0.001 | — |
部位 | 因子数 | 因子 | 回归预测模型(n=24) | r2 | P | |
---|---|---|---|---|---|---|
茎叶 | 单因子 | pH | lgCd茎叶=1.750-0.358pH | 0.317 | 0.004 | — |
lgACd | lgCd茎叶=0.572+0.897lgACd | 0.449 | <0.001 | — | ||
双因子 | pH,lgACd | lgCd茎叶=2.124-0.310pH+0.817lgACd | 0.684 | 0.001 | <0.001 | |
pHlgACd | lgCd茎叶=0.621+0.184pHlgACd | 0.602 | <0.001 | — |
[1] |
Williams P N, Zhang H, Davison W, et al. Evaluation of in situ DGT measurements for predicting the concentration of Cd in Chinese field-cultivated rice: impact of soil Cd: Zn ratios[J]. Environmental Science & Technology, 2012,46(15):8009-8016.
doi: 10.1021/es301195h URL |
[2] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014,36(5):10-11. |
[3] | Joseph T, Dubey B, Mcbean E A. Human health risk assessment from arsenic exposures in Bangladesh[J]. Science of the Total Environment, 2015(527-528):552-560. |
[4] | 安宁, 范明生, 张福锁. 水稻最佳作物管理技术的增产增效作用[J]. 植物营养与肥料学报, 2015,21(4):846-852. |
[5] | 雷鸣, 曾敏, 王利红, 等. 湖南市场和污染区稻米中As、Pb、Cd污染及其健康风险评价[J]. 环境科学学报, 2010,30(11):2314-2320. |
[6] |
Römkens P F A M, Guo H Y, Chu C L, et al. Prediction of Cadmium uptake by brown rice and derivation of soil-plant transfer models to improve soil protection guidelines[J]. Environmental Pollution, 2009,157(8-9):2435-2444.
doi: 10.1016/j.envpol.2009.03.009 pmid: 19345457 |
[7] | 莫争, 王春霞, 陈琴, 等. 重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布[J]. 环境化学, 2002,21(2):110-116. |
[8] | 仲晓春, 陈京都, 郝心宁. 水稻作物对重金属镉的积累、耐性机理以及栽培调控措施进展[J]. 中国农学通报, 2015,31(36):1-5. |
[9] | 胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报, 2013,3(3):432-437. |
[10] | Wang X, Yao H, Ming H W, et al. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and as accumulation in rice (Oryza sativa L.)[J]. Environmental Geochemistry & Health, 2013,35(6):779-788. |
[11] | 张振兴, 纪雄辉, 谢运河, 等. 水稻不同生育期施用生石灰对稻米镉含量的影响[J]. 农业环境科学学报, 2016,35(10):1867-1872. |
[12] | 李志博, 骆永明, 宋静, 等. 基于稻米摄入风险的稻田土壤镉临界值研究:个案研究[J]. 土壤学报, 2008,45(1):76-81. |
[13] | 张厦, 宋静, 高慧, 等. 贵州铅锌冶炼区农田土壤镉铅有效性评价与预测模型研究[J]. 土壤, 2017,49(2):328-336. |
[14] | 蒋红群, 王彬武, 刘晓娜, 等. 北京市土壤重金属潜在风险预警管理研究[J]. 土壤学报, 2015,52(4):731-746. |
[15] | 叶长城, 陈喆, 彭鸥, 等. 不同生育期Cd胁迫对水稻生长及镉累积的影响[J]. 环境科学学报, 2017,37(8):3201-3206. |
[16] |
Jing S, Lianqing L I, Pan G. Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil[J]. Journal of Environmental Sciences, 2009,21(2):168-172.
doi: 10.1016/S1001-0742(08)62246-9 URL |
[17] |
Dunbar K R, Mclaughlin M J, Reid R J. The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.)[J]. Journal of Experimental Botany, 2003,54(381):349-354.
pmid: 12493863 |
[18] | 肖美秀, 林文雄, 陈祥旭, 等. 镉在水稻体内的分配规律与水稻镉耐性的关系[J]. 中国农学通报, 2006,22(2):379-379. |
[19] | Li Y, Pang H D, He L Y, et al. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria[J]. Ecotoxicology & Environmental Safety, 2017,138:56-63. |
[20] | 周静, 杨洋, 孟桂元, 等. 不同镉污染土壤下水稻镉富集与转运效率差异[J]. 生态学杂志, 2018(1):89-94. |
[21] | Nocito F F, Lancilli C, Dendena B, et al. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation[J]. Plant Cell & Environment, 2011,34(6):994-1008. |
[22] | 龙小林, 向珣朝, 徐艳芳, 等. 镉胁迫下籼稻和粳稻对镉的吸收、转移和分配研究[J]. 中国水稻科学, 2014,28(2):177-184. |
[23] |
Kobayashi N I, Keitaro T, Atsushi H, et al. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging[J]. Journal of Experimental Botany, 2013,64(2):507-517.
doi: 10.1093/jxb/ers344 pmid: 23202130 |
[24] | 唐非, 雷鸣, 唐贞, 等. 不同水稻品种对镉的积累及其动态分布[J]. 农业环境科学学报, 2013(6):1092-1098. |
[25] | 刘昭兵, 纪雄辉, 彭华, 等. 水分管理模式对水稻吸收累积镉的影响及其作用机理[J]. 应用生态学报, 2010,21(4):908-914. |
[26] |
Liu J, Qian M, Cai G, et al. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain[J]. Journal of Hazardous Materials, 2007,143(1):443-447.
doi: 10.1016/j.jhazmat.2006.09.057 URL |
[27] |
Liu W, Zhou Q, Jing A, et al. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars[J]. Journal of Hazardous Materials, 2010,173(1-3):737-743.
doi: 10.1016/j.jhazmat.2009.08.147 URL |
[28] |
Yu H, Wang J, Fang W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J]. Science of the Total Environment, 2006,370(2-3):302-309.
doi: 10.1016/j.scitotenv.2006.06.013 URL |
[29] |
龙新宪, 王艳红, 刘洪彦. 不同生态型东南景天对土壤中Cd的生长反应及吸收积累的差异性[J]. 植物生态学报, 2008,32(1):168-175.
doi: 10.3773/j.issn.1005-264x.2008.01.019 |
[1] | HAN Jiaxi, FAN Zhonghan, DONG Yixia, LV Xinrui, LI Hongchun, CHEN Qinghua, LI Honghao, LIN Lijin, HU Rongping. Effect of Abscisic Acid on Cadmium Accumulation of Grape Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(34): 46-51. |
[2] | GAO Linlin, WANG Chensisi, ZHANG Ning, HU Hanxiu, MA Youhua. Effect of Lime Application with Organic Materials on Soil Cadmium Form in Rice-wheat Rotation Fields [J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 81-86. |
[3] | ZHU Jingping, DENG Qiuhong. Migration and Transformation Pathways of Nitrogen in Simulated Paddy Field System with Deep Application of Urea [J]. Chinese Agricultural Science Bulletin, 2022, 38(27): 66-73. |
[4] | QUAN Shengxiang, SHI Xuefeng, LIU Xiaoyue, LI Changwu, GE Yi, ZHANG Yan. Effects of Amaranthus hypochondriacus Enhanced by Biodegradable Chelating Agent on the Remediation of Cadmium Contaminated Farmland [J]. Chinese Agricultural Science Bulletin, 2022, 38(25): 85-89. |
[5] | GAO Zhongchao, SUN Lei, WANG Lihua, DU Chunying, ZHANG Liguo, ZHANG Jiuming, WANG Wei, GU Wei. Effects of Different Contents of Cd2+ in Soil on Growth and Development of Hemp and Soybean Seedlings [J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 89-92. |
[6] | LIU Jing, YANG Wei, CHENG Dan, REN Yongjian, WANG Lijuan. Effects of Surface Diurnal Temperature Range on Chemical Constituents of Flue-cured Tobacco in Hubei Tobacco-growing Areas [J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 97-104. |
[7] | ZHANG Qi, LIU Haitao, TIAN Jing, YAO Li, WANG Hong, LIN Chaowen. Effects of Tillage Methods on Heavy Metal Cadmium Accumulation in Rice-Wheat Rotation System in Chengdu Plain [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 109-113. |
[8] | LEI Xingyu, HU Yao, DENG Gangqiao, LI Honggao, ZHANG Yuelong, HU Die, LI Lihui. Effects of Passivator on Cadmium Content and Physiological Characteristics of Lilium lancifolium [J]. Chinese Agricultural Science Bulletin, 2022, 38(19): 66-72. |
[9] | ZHANG Gengmiao, ZHAO Yujie. The Uptake of Cd and Pb by Different Crops in Zhuji City: Enrichment Factor and Safety Threshold [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 100-106. |
[10] | CAO Caihong, CAO Lingling, ZHU Ning, CHEN Jiahe, ZHAO Liqun, TIAN Yanan, ZHANG Baojie, HE Bingqing. Effects of Different Agronomic Measures on Strawberry Continuous Cropping Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(18): 107-112. |
[11] | WEN Xiong, FAN Chengwu, HAN Maode, SHAO Daixing, QIN Song, CHAI Guanqun. Effect of Carbon-based and Silicate Passivators on Cd Reduction in Moderately Cd Contaminated Chili Soil [J]. Chinese Agricultural Science Bulletin, 2022, 38(15): 98-104. |
[12] | ZHOU Fen, LIU Yuan, LI Zhongyang, LI Baogui, LI Lele, TAO Zhen. Remediation Effects of Conditioners and Cultivation Measures on Cadmium-contaminated Wheat Field [J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 120-126. |
[13] | ZHENG Zehua, YU Yanlue, MA Zhongfen, ZHU Huaiwei. The Characteristics of Climate Change in Main Growing Stages of Blueberry from 1968 to 2018 in Qingpu, Shanghai [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 97-105. |
[14] | MING Jiajia, XIANG Jiqian, KANG Yu, HUANG Lin, CHEN Yongbo, QU Yong, HU Baishun, YIN Hongqing. Effect of Different Passivators on Cadmium Contaminated Soil in Enshi [J]. Chinese Agricultural Science Bulletin, 2022, 38(1): 93-99. |
[15] | ZHOU Wanting, WANG Man, ZHOU Xiang, GAO Zhuo, LI Jiajia, LI Wangsheng, LI Siqi, WANG Xueqian, WANG Luhong, LIU Dali. BvGSTU9 Gene in Sugar Beet: Bioinformatics and Expression Analysis Under Cadmium Stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 111-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||