Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (5): 1-8.doi: 10.11924/j.issn.1000-6850.casb2021-0279
YAN Yuntao(), HE Xi, ZHANG Haiqing, HE Jiwai(
)
Received:
2021-03-20
Revised:
2021-06-13
Online:
2022-02-15
Published:
2022-03-17
Contact:
HE Jiwai
E-mail:smileyyt1314@163.com;hejiwai@hunau.edu.cn
CLC Number:
YAN Yuntao, HE Xi, ZHANG Haiqing, HE Jiwai. Advances in Research on the Storability of Rice Seeds[J]. Chinese Agricultural Science Bulletin, 2022, 38(5): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.casb.org.cn/EN/10.11924/j.issn.1000-6850.casb2021-0279
[1] | 舒在习. 储粮品质变化及其指标应用的探讨[J]. 西部粮油科技, 2001, 26(4):35-37. |
[2] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017(17):2. |
[3] | ANDERSON J D. Metabolic changes as sociated with senscence[J]. Seed science and technology, 1973(1):401-416. |
[4] | 闫慧芳, 毛培胜. 老芒麦种子人工加速老化条件的筛选比较[J]. 种子, 2013, 32(7):1-6. |
[5] | DRAGANIC I, LEKIC S. Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions[J]. Turkish journal of agriculture & forestry, 2014, 36(4):421-428. |
[6] | MCDONALD M B. Seed deterioration physiology, repair and assessment[J]. Seed science and technology, 1999, 1(27):177-237. |
[7] | CALDWELL D W P. Seed vigor and vigor tests[J]. Proceedings of the association of official seed analysts, 1960, 50(1):124-129. |
[8] | 莫青, 吕燕燕, 王彦荣. 箭筈豌豆种子人工加速老化条件筛选的研究[J]. 草业学报, 2017, 26(11):131-138. |
[9] | 胡贵江. 棉籽硬实对加速老化的反应[J]. 种子世界, 1988(1):38-24. |
[10] | 贾风勤, 朱新荣, 张会群. 老化湿度和老化时间对狗尾草种子活力指标的影响[J]. 种子, 2016, 35(7):79-82. |
[11] |
PILLAY D T. Protein synjournal in aging soybean cotyledons. Loss in translational capacity[J]. Biochembiophys res communication, 1977, 79(3):796-804.
doi: 10.1016/0006-291X(77)91182-2 URL |
[12] | BEWLEY J, BRADFORD K, HILHORST H, et al. Seeds: physiology of development, germination and dormancy[M]. (3rd Edition). Springer New York, 2013:341-376. |
[13] | 张兆英. 种子劣变机制研究进展[J]. 沧州师范专科学校学报, 2005(2):89-90. |
[14] |
ERAN A, JEROME S, PATRICIA B, et al. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties[J]. Scientific reports, 2018, 8(1):5155.
doi: 10.1038/s41598-018-23408-0 URL |
[15] | 颜启传, 李稳香. 杂交水稻种子活力与田间生产性能之间的关系[J]. 中国农业科学, 1995, 28(S1):90-98. |
[16] |
RAJJOU L, GALLARDO K, DEBEAUJON I, et al. The effect of α-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination[J]. Plant physiology, 2004, 134(4):1598-1613.
doi: 10.1104/pp.103.036293 URL |
[17] |
LOWENSON J D, CLARKE S. Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypojournal[J]. Journal of biological chemistry, 1992, 267(9):5985-5995.
doi: 10.1016/S0021-9258(18)42652-X URL |
[18] |
OGE L, BOURDAIS G, BOVE J, et al. Protein N repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis[J]. The plant cell, 2008, 20(11):3022-3037.
doi: 10.1105/tpc.108.058479 URL |
[19] |
WEI Y, XU H, DIAO L, et al. Protein repair L-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability[J]. Plant molecular biology, 2015, 89(4-5):475-492.
doi: 10.1007/s11103-015-0383-1 URL |
[20] | 付华, 王彦荣, 余玲. 老化处理对几种牧草种子乙烯释放量的影响[J]. 草业学报, 2001, 10(1):64-70. |
[21] |
KRANNER I, MINIBAYEVA F V, BECKETT R P, et al. What is stress? Concepts, definitions and applications in seed science[J]. New phytologist, 2010, 188(3):655-673.
doi: 10.1111/nph.2010.188.issue-3 URL |
[22] |
SANO N, RAJJOU L, NORTH H M, et al. Staying alive: molecular aspects of seed longevity[J]. Plant cell physiology, 2016, 57(4):660-674.
doi: 10.1093/pcp/pcv186 URL |
[23] | FU Y B, AHMED Z, DIEDERICHSEN A. Towards a better monitoring of seed ageing under ex situ seed conservation[J]. Conservation physiology, 2015, 3(1):cov026. |
[24] |
KUREK K, PLITTA-Michalak B, RATAJCZAK E. Reactive oxygen species as potential drivers of the seed aging process[J]. Plants, 2019, 8(6):174.
doi: 10.3390/plants8060174 URL |
[25] |
CHEN H, CHU P, ZHOU Y, et al. Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis[J]. Journal experimental botany, 2012, 63(11):4107-21.
doi: 10.1093/jxb/ers093 URL |
[26] |
PLITTA B P, MICHALAK M, BUJARSKA-BORKOWSKA B, et al. Effect of desiccation on the dynamics of genome-wide DNA methylation in orthodox seeds of acer platanoides L[J]. Plant physical biochemical, 2014, 85:71-77.
doi: 10.1016/j.plaphy.2014.10.014 URL |
[27] | LIU Y, HE J, YAN Y. et al. Comparative transcriptomic analysis of two rice (Oryza sativa L.) Male sterile line seed embryos under accelerated aging[J]. Plant molecular biology, 2020, 38(2):282-293. |
[28] |
LI L, LIN Q, LIU S, et al. Identification of quantitative trait loci for seed storability in rice (Oryza Sativa L.)[J]. Plant breed, 2012, 131(6):739-743.
doi: 10.1111/pbr.2012.131.issue-6 URL |
[29] |
MIURA K, LIN S, YANO M, et al. Mapping quantitative trait loci controlling seed longevity in rice (Oryza Sativa L.)[J]. Theoretical and applied genetics, 2002, 104(6):981-986.
doi: 10.1007/s00122-002-0872-x URL |
[30] |
SASAKI K, FUKUTA K, SATO T. Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage[J]. Plant breeding, 2005, 124(4):361-366.
doi: 10.1111/pbr.2005.124.issue-4 URL |
[31] |
XUE Y, ZHANG S Q, YAO Q H, et al. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.)[J]. Euphytica, 2008, 164(3):739-744.
doi: 10.1007/s10681-008-9696-3 URL |
[32] |
JIANG W, LEE J, JIN T M, et al. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice[J]. Molecules and cells, 2011, 31(4):385-392.
doi: 10.1007/s10059-011-0049-z URL |
[33] | 刘喜, 林秋云, 孙爱玲, 等. 水稻种子耐贮性QTL qSS-9的精细定位[J]. 南京农业大学学报, 2015, 38(6):877-882. |
[34] | 沈圣泉, 庄杰云, 王淑珍, 等. 水稻种子耐贮藏性QTL主效应和上位性效应分析[J]. 分子植物育种, 2005(3):323-328. |
[35] | 柳武革, 王丰, 李金华, 等. 水稻耐储藏特性相关基因的QTL及上位性分析[J]. 作物学报, 2005(12):1672-1675. |
[36] |
ZENG D L, GUO L B, XY Y B, et al. QTL analysis of seed storability in rice[J]. Plant breeding, 2006, 125(1):57-60.
doi: 10.1111/pbr.2006.125.issue-1 URL |
[37] |
HANG N T, LIN Q, LIU L, et al. Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions[J]. Euphytica, 2015, 203(3):673-681.
doi: 10.1007/s10681-014-1304-0 URL |
[38] |
LIN Q, WANG W, REN Y, et al. Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22[J]. Breeding science, 2015, 65(5):411-419.
doi: 10.1270/jsbbs.65.411 URL |
[39] | 任淦, 彭敏, 唐为江, 等. 水稻种子衰老相关基因定位[J]. 作物学报, 2005(2):183-187. |
[40] | KERMODE A R. Approaches to elucidate the basis of desiccation-tolerance in seeds[J]. Seed science ressearch, 1997, 7(2):75-95. |
[41] |
SANO N, RAJJOU J, NORTH H M, et al. Staying alive: molecular aspects of seed longevity[J]. Plant cell physical, 2016, 57(4):660-674.
doi: 10.1093/pcp/pcv186 URL |
[42] |
LI T, ZHANG Y M, WANG D, et al. Regulation of seed vigor by manipulation of raffinose family oligosaccharides in Maize and Arabidopsis thaliana[J]. Molecular plant, 2017, 10(12):1540-155.
doi: 10.1016/j.molp.2017.10.014 URL |
[43] |
DELORGE I, FIGUEROA CM, Feil R, et al. Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis, thaliana[J]. Biochemical Journal, 2015, 466(2):283-290.
doi: 10.1042/BJ20141322 URL |
[44] | KAUR H, PETLA B P, KAMBLE N U, et al. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress[J]. Frontiers in plant science, 2015, 6:713. |
[45] |
KOTAK S, VIERLING E, BAUMLEIN H, et al. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis[J]. Plant cell, 2007, 19(1):182-195.
doi: 10.1105/tpc.106.048165 URL |
[46] |
ALMOGUERA C, PRIETO-DAPENA P, DIAZ-MARTIN J, et al. The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9[J]. BMC plant biology, 2009, 19(9):75.
doi: 10.1186/s12870-019-1678-1 URL |
[47] |
BALDWINIT, SCHMELZEA, ZHANGZP. Effect of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotiana Sylvestris[J]. Journal of chemical ecology, 1996, 22(1):61-74.
doi: 10.1007/BF02040200 URL |
[48] |
SOFO A, DICHIOI B, XILOYANNIS C, et al. Lipoxygenaseactivity and proline accumulation in leaves and roots of olivetreesin response to droughtstress[J]. Physical plant, 2004, 121(1):58-65.
doi: 10.1111/ppl.2004.121.issue-1 URL |
[49] |
MELAN M A, DONG X, ENDARA M E, et al. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisicacid, and methyl jasmonate[J]. Plant physiology, 1993, 101(2):441-450.
doi: 10.1104/pp.101.2.441 URL |
[50] |
ONGENA M, DUBBY F, ROSSOGNOL F, et al. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic pseudomonas strain[J]. Molecular plant-microbe interactions, 2004, 17(9):1009-1018.
doi: 10.1094/MPMI.2004.17.9.1009 URL |
[51] |
SUZUKI Y, ISE K, LI C, et al. Volatile components in stored rice [Oryza sativa (L.)] of varieties with and without lipoxygenase-3 in seeds[J]. Journal of agricultural and food chemistry, 1999, 47(3):1119-1124.
doi: 10.1021/jf980967a URL |
[52] | 宋美, 吴跃进, 刘斌美. 离子辐照选育水稻LOX-1缺失回复突变体及其对种子寿命的影响[J]. 激光生物学报, 2009, 18(2):230-235. |
[53] | 吴跃进, 吴先山, 沈宗海, 等. 水稻耐储藏种质创新及相关技术研究[J]. 粮食储藏, 2005(1):17-20. |
[54] | 刘南南, 张文伟, 江玲, 等. 水稻脂氧合酶-3基因启动子的特性分析[J]. 南京农业大学学报, 2008(4):1-7. |
[55] | 汪仁, 沈文飚, 江玲, 等. 水稻种子脂氧合酶基因OsLOX1的原核表达、纯化及鉴定[J]. 中国水稻科学, 2008(2):118-124. |
[56] | CAI W L, YAO Y J, YANG C J, et al. Changes in germination and physiochemical properties of transgenic cry1/cry1 ac gene rice during long-term storage[J]. Cereal chemistry, 2011, 149(5):459-462. |
[57] |
SHIN J H, KIM S R, AN G. Rice Aldehyde dehydrogenase7 Is needed for seed maturation and viability[J]. Plant physiology, 2009, 149(2):905-915.
doi: 10.1104/pp.108.130716 URL |
[58] |
VERMA P, KAUR H, PETLA B P, et al. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins[J]. Plant physical, 2013, 161(3):1141-1157.
doi: 10.1104/pp.112.206243 URL |
[59] |
WEI Y D, XU H B, DIAO L R, et al. Protein repairl-isoaspartyl methyltransferase 1 (PIMT1) in rice improves seed longevity by preserving embryo vigor and viability[J]. Plant molecular biology, 2015, 89(4-5):475-492.
doi: 10.1007/s11103-015-0383-1 URL |
[60] |
LEE J C, KANG S U, JEON Y, et al. Protein L-isoaspartyl methyltransferase regulates p53 activity[J]. Nature communication, 2012, 3(1):927.
doi: 10.1038/ncomms1933 URL |
[61] | NISARGA K N, VEMANNA R S, CHANDRASHEKAR B K, et al. Aldo-ketoreductase 1 (AKR1) improves seed longevity in tobacco and rice by detoxifying reactive cytotoxic compounds generated during ageing[J]. Rice(N Y), 2017, 10(1):11. |
[62] |
SHEN Y, ZHANG Y, YANG C, et al. Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice[J]. Planta, 2012, 235(2):433-441.
doi: 10.1007/s00425-011-1477-x URL |
[63] |
ZHOU Y, CHU P, CHEN H, et al. Overexpression of nelumbo nucifera metallothioneins 2A and 3 enhances seed germination vigor in arabidopsis[J]. Planta, 2012, 235(3):523-537.
doi: 10.1007/s00425-011-1527-4 URL |
[64] |
SEO Y S, KIM E Y, KIM W T. The Arabidopsis sn-1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability[J]. Journal experimental botany, 2011, 62(15):5683-5698.
doi: 10.1093/jxb/err250 URL |
[65] |
CUTLER A J, KROCHKO J E. Formation and breakdown of ABA[J]. Trends plant science, 1999, 4(12):472-478.
doi: 10.1016/S1360-1385(99)01497-1 URL |
[66] |
KUSHIRO T, OKAMOTO M, NAKABAYASHI K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism[J]. The EMBO journal, 2004, 23(7):1647-1656.
doi: 10.1038/sj.emboj.7600121 URL |
[67] |
ZANG G, ZOU H, ZHANG Y, et al. The De-Etiolated 1 homolog of Arabidopsis modulates the ABA signaling pathway and ABA biosynjournal in rice[J]. Plant physiology, 2016, 171(2):1259-1276.
doi: 10.1104/pp.16.00059 URL |
[68] | BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the national academy of sciences of the united states of america, 2006, 103(45):17042-17047. |
[69] |
CHEN H, RUAN J, CHU P, et al. AtPER1 enhances primary seed dormancy and reduces seed germination by suppressing the ABA catabolism and GA biosynjournal in Arabidopsis seeds[J]. The plant journal, 2020, 101(2):310-323.
doi: 10.1111/tpj.v101.2 URL |
[70] |
QUETTIER AL, BERTRAND C, HABRICOT Y, et al. The phs1-3 mutation in a putative dual-specificity protein tyrosine phosphatase gene provokes hypersensitive responses to abscisic acid in Arabidopsis thaliana[J] The plant journal, 2006, 47(5):711-719.
doi: 10.1111/j.1365-313X.2006.02823.x URL |
[71] |
BUESO E, MUNOZ-BERTOMEU J, CAMPOS F, et al. Arabidopsis thaliana homeobox25 uncovers a role for gibberellins in seed longevity[J]. Plant physiology, 2014, 164(2):999-1010.
doi: 10.1104/pp.113.232223 URL |
[72] |
BUESO E, MUNOZ-BERTOMEU J, CMPOS F, et al. Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration[J]. The plant journal, 2016, 87(6):583-596.
doi: 10.1111/tpj.2016.87.issue-6 URL |
[73] | LIU X, ZHANG H, ZHAO Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J]. Proceedings of the national academy of sciences of the united states of america, 2013, 110(38):15485-15490. |
[1] | YANG Zhuoying, LIANG Xiaojing, ZENG Xiangyan, WEI Xiaojuan, WU Siyu, LI Baocai. Annual Growth Rhythm and Biomass Allocation of Cinnamomum cassia Presl Seedlings [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 21-26. |
[2] | ZHAO Shouping, XIAO Wendan, CHEN De, YE Xuezhu, ZHANG Qi, WU Shaofu, HU Jing, GAO Na, HUANG Miaojie. Evaluation of Heavy Metal Passivation in Contaminated Paddy Fields Based on Soil Quality and Rice Safety [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 51-62. |
[3] | ZHANG Ming, LIU Longsheng, FANG Shengliang, ZOU Dan, HU Yao. Application Effect of Simplified Control Technology “Three Prevention and Two Control” on Diseases and Pests of Ratooning Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 79-84. |
[4] | LIU Weixi, YIN Wenfeng, LI Xiaojuan, XIAO Youlun. The Occurrence Cause and Prevention and Control Measures of Rice Straighthead Disease in Dryland-to-Paddy Field [J]. Chinese Agricultural Science Bulletin, 2023, 39(8): 85-89. |
[5] | WU Longmei, ZHANG Yue, LIU Yan, ZOU Jixiang, YANG Taotao, BAO Xiaozhe, HUANG Qing, CHEN Qingchun, JIANG Yaozhi, LIANG Qiaoli, ZHANG Bin. Direct Seeding Rice: Research Progress and Development Strategy [J]. Chinese Agricultural Science Bulletin, 2023, 39(6): 1-5. |
[6] | TIAN Ting, ZHANG Qing, XU Wen. Prediction of Rice Canopy SPAD Value Based on UAV Multispectral Images [J]. Chinese Agricultural Science Bulletin, 2023, 39(4): 149-153. |
[7] | ZHENG Jian, RUI Danping, GAO Xianyu, ZHANG Huiyun, SONG Yunlian, PAN Jihong, YU Weilin, WANG Yuequan, LIU Siyuan, ZHENG Pingqing, LUO Xinping. Fruit Quality Performance of Litchi chinensis ‘Guiwei’ and Regional Test Cultivars in Yongde of Yunnan [J]. Chinese Agricultural Science Bulletin, 2023, 39(4): 44-51. |
[8] | CHEN Lulu, MENG Xianghe. Study on the Best Brewing Technology of Sweet Ferment Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(3): 148-155. |
[9] | RUAN Mingju, WANG Rui, ZHANG Hui, YANG Yuege, ZENG Qianchun. Preliminary Study on Introduction of Moringa to Yuanmou of Yunnan [J]. Chinese Agricultural Science Bulletin, 2023, 39(2): 16-21. |
[10] | XIAO Benze, WANG Zilin. Cultivation and Breeding Assessment of Rice Transgenic Restorers Carrying Herbicide-resistant EPSPS Gene [J]. Chinese Agricultural Science Bulletin, 2023, 39(2): 8-15. |
[11] | KANG Yunqiang, LI Lingling, XIE Junhong, ZHANG Jian, DU Changliang, ZECHARIAH Effah. Adaptability and Wind Erosion Resistance of Winter Rapeseed in Semi-arid Area of Central Gansu [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 31-36. |
[12] | WANG Sizhi, GUAN Wenling, HAO Xiaohan, SONG Jie. Study on Germination Characteristics of Gaultheria procumbens Seeds [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 77-84. |
[13] | ZHOU Dongdong, ZHANG Jun, GE Mengjie, LIU Zhonghong, ZHU Xiaohuan, LI Chunyan. Effects of Different Nitrogen Treatments on Grain Yield, Nitrogen Utilization Efficiency and Quality of Late-sowing Wheat ‘Huaimai 36’ Following Rice [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 1-7. |
[14] | Pema Rigzin, Dhonyo Dorji, Delek Kunkyi, Dekyi Yangzom, Yeshe Dorji, Penpa Tsring. Constructing the Monitoring Model of High Temperature Damage on Rice by Combining Data from Satellites and Ground Automatic Weather Stations [J]. Chinese Agricultural Science Bulletin, 2023, 39(1): 133-141. |
[15] | LUO Xianfu, LIU Wenqiang, PAN Xiaowu, DONG Zheng, LIU Sanxiong, LIU Licheng, YANG Biaoren, SHENG Xinnian, LI Xiaoxiang. Mapping of Plant Height QTL Using NILs Derived from Residual Heterozygous Lines in Rice [J]. Chinese Agricultural Science Bulletin, 2022, 38(9): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||